Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронный конденсатор

    Схема установки приведена на рисунке 2.1. Она состоит из следующих основных узлов реактора окисления, системы конденсации и улавливания парогазовых продуктов реакции и растворителя, системы контроля и регулирования температуры. В качестве реактора используется стеклянный цилиндрический сосуд (1) ёмкостью 500 мл, снабжённый пробоотборником (а), газоподводящей трубкой (б), внутренним холодильником (в), холодильником-конденсатором (г) и турбинной мешалкой (д). Мешалка приводится в действие электромотором (2), соединённым с ЛАТРом (13). Для улучшения перемешивания реактор снабжён отражательными перегородками. Обогрев реактора осуществляется с помощью нихромовой спирали (11), напряжение на которой регулируется ЛАТРом (12). Постоянство температуры поддерживают с точностью 0,5 С контактным термометром (14) управляющим электронным реле (15), которое периодически включает и выключает ЛАТР (12). Внутренний холодильник (в) используют для поддержания постоянства температуры при значительном экзотермическом эффекте реакции. [c.29]


    Возникновение электронного конденсатора обусловлено волновой природой вещества, т. е. фундаментальными квантово-механическими свойствами материи. Поэтому сам факт образования электронного конденсатора на поверхности металла с его внешней стороны не нуждается в каких-либо дополнительных обоснованиях и доказательствах. Единственное, что может обсуждаться — это вопрос о том, каков конкретный вклад электронного конденсатора в то или иное свойство двойного электрического слоя. Заметим, что в рамках общепринятой в настоящее время модели молекулярного конденсатора Штерна-Грэма влиянием электронов на свойства двойного слоя полностью пренебрегают. [c.50]

    Генератор А р к у с — обеспечивает широкий интервал электронно-управляемых режимов дуги переменного и униполярного тока с частотой следования разрядов 20 33,3 и 100 с (для дуги переменного тока) и 10 12,5 16,6 25 и 50 С (для униполярной дуги). Фаза поджига имеет три фиксированные значения — 60, 90 и 120°. Сила тока дуги может изменяться от 1 до 16 А при наличии внутреннего реостата и до 30 А с внешним реостатом. Емкость конденсатора в режиме низковольтной искры равна 40 мкф. [c.63]

    Хотя отношение заряда электрона к его массе было измерено Томсоном в 1897 г., абсолютную величину заряда электрона удалось установить только в 1911 г., когда Роберт Милликен (1868-1953) поставил остроумный опыт, иллюстрируемый рис. 1-13. Он впрыскивал пульверизатором мельчайшие капельки масла между горизонтально расположенными пластинами конденсатора и затем облучал эти капельки рентгеновскими лучами. Возникающие при ионизации воздуха электроны прилипали к капелькам масла, на которых таким образом возникало один, два или несколько электронных зарядов. Милликен сначала измерял скорость свободного падения заряженных капелек в воздухе с известной вязкостью. Затем он измерял напряжение, которое необходимо приложить к пластинам конденсатора, чтобы заставить капельки масла неподвижно повиснуть между пластинами. Он вычислил, что заряд на любой капельке масла всегда представляет собой целое кратное величины 1,602 10 Кл, и пришел к правильному выводу, что это и есть заряд 1 электрона. [c.50]

    Образование электронного конденсатора сопровождается возникновением разности потенциалов между объемом металла и объемом раствора, прр чем металл всегда заряжается положительно. Так как эта разность достаточно велика (порядка одного-двух вольт), она в значительной [c.307]

Рис. 1-13. Опыт Милликена по определению заряда электрона. Крошечные капельки масла впрыскиваются в пространство между горизонтально расположенными пластинами конденсатора. Капельки свободно падают в воздухе, а за их движением наблюдают в микроскоп. Радиус капельки ВЫЧИСЛЯК5Т по окончательной скорости ее падения с учетом вязкости воздуха. Воздух ионизуют рентгеновски- Рис. 1-13. Опыт Милликена по <a href="/info/1497953">определению заряда электрона</a>. Крошечные капельки масла впрыскиваются в пространство между <a href="/info/1032186">горизонтально расположенными</a> <a href="/info/801921">пластинами конденсатора</a>. <a href="/info/677079">Капельки свободно</a> падают в воздухе, а за их движением наблюдают в микроскоп. Радиус капельки ВЫЧИСЛЯК5Т по окончательной скорости ее падения с учетом <a href="/info/21464">вязкости воздуха</a>. Воздух ионизуют рентгеновски-

    Распределение плотности заряда в электронном конденсаторе получаем из (14.2) и (14.3), умножив на заряд электрона [c.312]

    Образование электронного конденсатора сопровождается возникновением разности потенциалов между объемом металла и объемом раствора, причем металл всегда заряжается положительно. Так как эта разность достаточно велика (порядка одного-двух вольт), она в значительной степени определяет абсолютный потенциал металла, емкость и поверхностную энергию межфазной границы. Необходимо отметить, что электростатическая энергия, накопленная в таком электронном конденсаторе, дает основной вклад в поверхностную энергию межфазной границы металл-электролит [17]. В то же время возникновение электростатической разности потенциалов между обкладками электронного конденсатора не меняет электрохимического потенциала электронов, образующих эти обкладки, поскольку последний всегда равен электрохимическому потенциалу электронов в объеме металла (напомним, что электроны обеих обкладок находятся в состоянии термо динамиче ского равновесия между собой). [c.50]

    ДО 180° С, при атмосферном давлении, а свыше 180° С — под вакуумом. Основные элементы аппарата (колба, ректификационная колонка на 50 теоретических тарелок, конденсатор-холодильник, приемники дистиллятов) выполнены из молибденового стекла и соединены между собой при помощи шлифов. Работа колонки частично автоматизирована автоматически поддерживается постоянство количества орошения, а при работе под вакуумом — постоянство остаточного давления и отбор нужного количества фракций ведется непрерывная запись температуры паров с помощью электронного потенциометра. Для автоматического поддержания постоянства количества орошения предусмотрен специальный наклонный манометр, связанный с регулятором перепада давления между верхней и нижней частями колонки. Автоматический отбор фракций обеспечивается применением электромагнитного клапана. [c.118]

    Наиболее важные области применения тантала — электронная техника и машиностроение. В электронике он применяется для изготовления емких и надежных электролитических конденсаторов, анодов мощных ламп, сеток. В химическом аппаратостроении из него изготовляют детали аппаратов, применяемых в производстве кислот. Тантал используется для изготовления сверхжаропрочных сталей, применяемых в промышленности и космической технике. В танталовых тиглях плавят металлы, например, редкоземельные. Из него изготовляют нагреватели высокотемпературных печей. Благодаря тому, что тантал не взаимодействует с живыми тканями организма человека и не вредит им, он применяется в хирургии для скрепления костей при переломах. Танталовыми нитями сшивают нервные волокна. [c.510]

    Это объясняется тем, что при ф>ф в двойном электрическом слое со стороны раствора расположены анионы, а при Ф<Ф — катионы. Анионы в двойном электрическом слое сильнее деформируются, чем катионы, так как в них имеются избыточные электроны и oh i слабее удерживаются ядром. Поэтому расстояние между зарядами двойного электрического слоя с обкладкой из анионов меньше, чем когда обкладка состоит нз катионов. С уменьшением расстояния между обкладками конденсатора его емкость увеличивается. [c.307]

    Схема установки, сконструированной Милликеном, изображена на рис. 1. Основной ее частью являлся электрический конденсатор, состоящий из латунных пластин I и 2, который находился в металлической камере 3, заключенной в термостат 4. При помощи распылителя 5 в камере создавался туман из маленьких капель масла. Через отверстие 6 в верхней пластине капли могли попадать в конденсатор. За их движением между пластинами конденсатора можно было наблюдать в зрительную трубу 7. Освещение находящегося в приборе воздуха рентгеновскими лучами (их источником служила трубка 10) вызывало ионизацию образующиеся в результате этого свободные электроны (или положительные ионы) попадали на капли масла, и капли получали электрический заряд е . Изменяя напряжение на пластинах конденсатора, можно было подобрать такое его значение, при котором сила электрического поля уравновешивала силу тяжести заряженной капли, и она оставалась неподвижной в поле зрения. Тогда [c.7]

    Известно, что силовые лииии изолированного электрического заряда распространяются равномерно во все стороны пространства, образуя сферические эквипотенциальные поверхности напряженностей поля. Эти силовые линии одного и того же заряда не могут пересекаться. При кулоновском взаимодействии двух неподвижных противоположно заряженных частиц боковое давление силовых трубок, окружающих центральную силовую трубку (уравнения 10 и 11), обеспечивает параллельность распространения силовых линий и прямолинейность их траектории между протоном и электроном. Поэтому для определения напряженности поля такой центральной силовой трубки можно использовать уравнение напряженности поля между пластинами плоского конденсатора при сравнительно малом расстоянии между пластинами [12]  [c.22]


    Таким образом, в процессе экспозиции накопительные конденсаторы выполняют роль интегрирующих устройств, усред- няющих значение интенсивности линии. По окончании экспозиции электронно-регистрирующее устройство производит последовательное измерение напряжений на накопительных конденсаторах и преобразование этого напряжения в логарифм относительной интенсивности сравниваемых линий. Для этого посредством ключа К каждый из конденсаторов разряжается через сопротивление Я по закону (рис. 3.12,6) [c.81]

    В отсутствие специфической адсорбции двойной слой можно уподобить плоскому конденсатору, одной обкладкой которого служит заряженная поверхность металла М, а другой -- эффективная граничная поверхность при Я. Между металлом и раствором создается скачок потенциала. Электрод обменивается катионами с раствором при любом установившемся скачке потенциала. Ток ионов из металла в раствор равен их току из раствора в металл и равнозначен токам электронов из раствора в металл и из металла в раствор. Силу этого тока, отнесенную к единица поверхности электрода, называют током обмена. Ток обмена считают стандартным /о при средней ионной активности раствора, равной единице (стр. 36). В различных системах /о = 10 —10 А/м . [c.129]

    Измерение емкости производится по мостовой схеме (рис. 51). На диагональ ВД моста подается напряжение от генератора высокой (465 кгц) частоты Г. С диагонали А Б напряжение снимается через усилитель У. При балансе схемы напряжение между точками АБ равно нулю. Это напряжение подается на сетку измерительной. электронной лампы, что обеспечивает максимальный анодный ток, а следовательно, и максимальное отклонение стрелки прибора. При наличии напряжения между точками А Б (отсутствие баланса схемы) отклонение стрелки прибора уменьшится. Следовательно, для получения баланса схемы необходимо добиваться максимального отклонения стрелки прибора. Изменение в балансе схемы производится конденсатором переменной емкости С, обеспечиваюш,им линейную зависимость изменения емкости от угла поворота подвижных пластин конденсатора. Это обеспечивает равномерность шкалы прибора. [c.95]

    Анализаторы могут быть с магнитной или электростатической фокусировкой, но последние имеют преимущество в защите от внешних электромагнитных помех, и в современных спектрометрах применяются анализаторы типа электростатического конденсатора. Геометрическая форма анализатора и режим пропускания через него электронов могут быть различны. Но обычно проводится предварительное торможение электронов на входе, а между образцом и анализатором создается некоторый потенциал. Этим добиваются лучшего разрешения, хотя и за счет некоторой потери чувствительности. [c.148]

    В узлах кристаллической решетки металла находятся положительно заряженные ионы. В результате их взаимодействия с полярными молекулами растворителя они отрываются от кристалла и переходят в раствор. Параллельно происходит противоположный процесс перехода ионов из раствора в металл под влиянием поля кристаллической решетки. Если в первый момент скорость процесса перехода ионов в раствор больше скорости обратного перехода ионов из раствора в металл то на поверхности металла появляется избыточный отрицательный заряд (избыточные электроны). Раствор приобретает положительный заряд. Положительно заряженные ионы не удаляются от поверхности металла, а вследствие электростатических взаимодействий скапливаются у поверхности. В результате образуется двойной электрический слой, который можно представить себе в виде конденсатора, отрицательная обкладка которого образована металлом (избыточными электронами), а положительная — слоем катионов в растворе, прилегающим к металлу. Между разноименно заряженными обкладками возникает скачок потенциала. Если в начальный момент скорость перехода ионов в раствор 1 1 меньше скорости перехода ионов из раствора в металл то поверхность металла зарядится положительно, и отрицательно заряженные ионы притянутся к поверхности металла, создавая избыток отрицательных зарядов. Итоговое направление перехода ионов зависит от соотношения работы выхода ионов из кристаллической решетки W и работы выхода ионов из раствора 1 ,,. [c.318]

    В так называемых конденсаторных методах меняется расстояние между двумя соединенными друг с другом металлическими пластинками, помещенными в вакуум. Так как емкость конденсатора зависит от расстояния между его обкладками, то при перемещении пластинок должен меняться заряд, т. е. будет протекать ток. Величина контактной разницы потенциалов определяется по значению компенсирующей внешней э. д. с. Третья группа методов основана на том, что контактная разность потенциалов равна разности работ выхода электронов из двух металлов. [c.190]

    Автоматические головки ректификационных колонн обычно работают на принципе регулирования объема отбираемой фракции по времени отбора. В этих головках с помощью механического или электронного реле времени (см. разд. 8.4) устанавливают необходимое отношение проме> утка времени включения реле (подача флегмы в колонну) к промежутку времени его выкдюяения (отбор дистиллята), соответствующее заданному флегмовому числу. При этом необходимо, чтобы скорость выкипания жидкости в кубе поддерживалась постоянной, например, с помощью специальных устройств, описанных в разд. 8.4. Подобные головки могут работать по двум методам. По первому из них паровой по,-ток разделяется в определенном соотношении и полученные, потоки направляются в раздельно работающие конденсаторы для флегмы и дистиллята. Второй метод заключается в полной конденсации паров с последующим делением образовавшегося конденсата в определенном соотношении. [c.383]

    Определение отношения ejm для электрона. Рассмотрим пучок электронов, проходящий между пластинами конденсатора (рис. 157). В конденсаторе на электрон действует сила электрического поля [c.288]

    За время t, которое электрон находится между пластинами конденсатора, он проходит расстояние у , определяемое соотношением [c.288]

    Е8-1. Прибор Е8-1 предназначен для измерения межэлектродных емкостей. На приборе можно измерять емкости в пределах от 10 до 50 пФ (1 пФ = 10 2 Ф). Прибор имеет пять поддиапазонов. Пределы измерения емкости от Ю " до 5-10 3 пФ первый поддиапазон (X 0,0001), второй поддиапазон (Х0,001) от 5-10-з до 5-10 пФ, третий поддиапазон (Х0,01) от 5-10 2 до 5-10- пФ, четвертый поддиапазон (ХОД) от 0,5 до 5,0 пФ и пятый поддиапазон (Х1) от 5,0 до 50 пФ. Погрешность измерения возрастает с уменьшением измеряемой емкости. Она составляет от 0,0001 до 0,001 пФ 5%, от 0,001 до 0,1 пФ 2%, от 0,1 до 50 пФ 1%. Частота тока генератора 465 кГц 27о. Измерение емкости производится по мостовой схеме (рис. 42). В диагональ ВД моста подается напряжение от генератора Г высокой частоты 465 кГц. С диагонали АБ напряжение снимается через усилитель переменного тока У. При балансе схемы напряжение между точками АБ равно нулю. Это напряжение подается на сетку измерительной электронной лампы, что обеспечивает максимальный анодный ток, а следовательно, и максимальное отклонение стрелки прибора. При наличии напряжения между точками АБ отклонение стрелки прибора уменьшается. Следовательно, для получения баланса схемы необходимо добиваться максимального отклонения стрелки прибора. Изменение в балансе схемы производится конденсатором переменной емкости С, обеспечивающим линейную зависимость емкости от угла поворота подвижных пластин конденсатора, связанного с равномерной шкалой прибора. В два плеча схемы включены конденсатор измеряемой емкости Сх и эталонный конденсатор Со. В два других плеча включены сопротивления и и конденсатор переменной емкости С. [c.91]

    Из квантовой механики известно, что волна свободных электронов в металле, попадая на его поверхность, проникает во внешнюю среду, где ее амплитуда быстро затухает. Так как электроны несут на себе электртеский заряд, во внешней среде (роль которой может играть вакуум, диэлектрик, раствор электролита и др.) возникает заряженное облако частиц (внешняя обкладка своеобразного электронного конденсатора). Одновременно с внутренней стороны границы раздела металл-внешняя среда образуется слой толщиной в несколько ангстрем, в котором положительный заряд ионного остова металла оказывается не скомпенсированным из-за того, что заполняющие его электроны вышли наружу. Этот слой играет роль внутренней положительной обкладки электронного конденсатора. В отсутствие приложенной извне разности потенциалов заряды обкладок равны и противоположны по знаку при потенциалах, отличных от потенциала нулевого заряда, избыточный заряд, подведенный к поверхности раздела от внешнего источника, компенсируется связанным зарядом среды. [c.307]

    Впервые на существование электронного конденсатора, как уже было упомянуто выше, указали Френкель и Райс. Но их идеи, с одной стороны, находились в противоречии с представлениями Гельмгольца-Штерна, а с другой — квантовая теория поверхностных явлений в то время только зарождалась и мало что могла дать для понимания свойств электронного конденсатора. Да и колтество факттеских данных, накопленных к тому времени, было еще недостаточно, чтобы на их основе можно было бы сделать надежный выбор в пользу той или иной модели. В результате идеи Френкеля и Райса были надолго и прочно забыты. И только в последние два десятилетия начал возрождаться интерес к электронному вкладу в свойства двойного электртеского слоя. [c.308]

    Поляризация молекул. В жестком (устойчивом) диполе центр тяжести положительных зарядов расположен на некотором расстоянии от центра тяжести отрицательных зарядов. В неполярной молекуле центры тяжести совпадают. Однако в электрическом поле (например, между заряженными пластянами конденсатора) такая молекула приобретает свойства диполя вследствие того, что центр тяжести ее положительных зарядов (ядер) смещается в сторону отрицательно заряженной пластины, а центр тяжести отрицательных зарядов (электронных оболочек) —в сторону положительно заряженной пластины. Таким образом, центры тяжести положительных и отрицательных зарядов будут раздвинуты и возникнет индуцированный диполь. Описанное явление называется поляризацией. [c.68]

    Наиболее важные области применения тантала — электронная техника и машиностроение. В электронике он применяется для изготовления электролитических конденсаторов, анодов мощных ламп, сеток. В химическом анпаратостроенни из него изготовляют детали аппаратов, применяемых в производстве кислот. В танталовых тиглях плавят металлы, например, редкоземельные. Из него изготовляют нагреватели высокотемпературных печей. Благодаря тому, что тантал не взаимодействует с живыми тканями организма человека и не вредит им, он применяется в хирургии для скрепления костей при переломах. [c.653]

    Для точного измерения и регулирования флегмового числа головки колонн снабжаются следующими устройствами и приборами капельницами трубками с косым срезом и капиллярами, служащими для подсчета падающих капель флегмы и дистиллята двумя параллельно соединенными и независимо охлаждаемыми конденсаторами флегмы и дистиллята регуляторами расхода флегмы и дистиллята в виде капилляров различной длины и диаметра, выбираемыми в соответствии с заданным флегмовым числом механическими или электронными реле времени, обеспечивающими автоматическое регулирование расхода флегмы путем деления потока пара или жидкости (электронное реле времени обычно выполняется в комплекте с электромагнитным регулятором). [c.379]

    Для измерения диэлектрической проницаемости пригодны также серийно выпускаемые приборы, предназначопные для измерения емкости, например, Е8-1 и Е8-2. Принцип действия обоих приборов аналогичен. Емкости в них измеряют с помощью схемы моста переменного тока, у которого одна пара плеч образована двумя дифференциальными трансформаторами, а другая—эталонным конденсатором и измеряемой емкостью. На одну диагональ моста подается напряжение от генератора высокой частоты, а с другой диагонали снимается напряжение разбаланса, которое после соответствующего усиления (регулятор чувствительности) подается на индикатор. В качестве индикатора в приборе Е8-1 используется миллиамперметр, а в приборе Е8-2 электронно-лучевая трубка (ЭЛТ). [c.334]

    Было показано (1, 2], что перспективным экспресс-методом оценки смазывающих свойств реактивных топлив является измерение работы выхода электрона (РВЭ) металлов при их контакте с топливом. Для более обстоятельной проверки этого экспресс-метода в последние годы были проведены работы по сопоставлению параллельно получаемых данных при однократной прокачке на насосах-регуляторах (метод ВНИИНП) и при измерении РВЭ. Во всех случаях РВЭ измеряли способом динамического конденсатора по методике, описанной в работе [3]. [c.78]

    Универсальным и эффективньс.м буфером заряда любого знака, своего рода молеку гярным конденсатором, является ароматическое ядро. Его замкнутая система л-электронов легко смещается и к заряду (положительному), 1г от заряда (отрицательного), т. е. легко поляризуется, что и приводит к делокал1гзации заряда. Благодаря такому эффекту бензн.н1>ные катион (33) и анион [c.73]

    Высокочастотная сушилка (рис. ХУ-36) состоит из лампового высокочастотного генератора / и сушильной камеры 2. Переменный ток нз сет1 поступает в выпрямитель 7, затем в генератор, где преобразуется в пере менный ток высокой частоты. Этот ток подводится к пластинам конденса торов 3 и 4, между которыми движется на ленте высушиваемый материал Данная сушилка имеет две ленты 5 и 6, на которых последовательно высу шивается материал. Под действием электрического поля высокой частоть ионы и электроны в материале (содержащего обычно некоторое количе ство электролита, например раствора солей) меняют направление движе ния синхронно с изменением знака заряда пластин конденсатора диполь ные молекулы приобретают вращательное движение, а неполярные моле [c.629]

    Р. Милликен определял заряд весьма малых капель, изучая равновесие их в электрическом поле конденсатора. Оказалось, что заряд их равен или превышает величину, являющуюся наименьшим зарядом (е = 4,8Ы0 СО8Е), и кратен ей. Измерение отношения заряда к массе ионов в разрядных трубках показало, что носители положительного заряда всегда имеют массу, значительно превышающую массу электрона. Оказалось, что наименьшей массой среди положительных ионов обладает протон. Среди носителей отрицательного заряда выделяется электрон, масса которого в 1839 раз меньше массы протона. [c.422]

    Миллнкен, определяя заряд электрона, разработал метод наблюдения за заряженными частицами в электростатическом поле, при котором подбирается такая разность потенциалов наиэбкладках конденсатора, чтобы частица могла витать неограниченно долго. Метод Милликена оказался весьма плодотворным. Поддерживая частицу в витающем состоянии, можно, например, изучать броуновское движение, причем с одной и той же частицей можно проводить до нескольких тысяч измерений. [c.190]


Смотреть страницы где упоминается термин Электронный конденсатор: [c.603]    [c.308]    [c.50]    [c.51]    [c.128]    [c.6]    [c.385]    [c.251]    [c.82]    [c.153]    [c.288]    [c.14]   
Физическая химия Термодинамика (2004) -- [ c.307 ]




ПОИСК







© 2025 chem21.info Реклама на сайте