Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты как агрессивные среды на металлы и сплавы

    Графит — это единственный конструкционный неметаллический материал, обладающий высокой теплопроводностью при достаточно высокой инертности в большинстве агрессивных сред, термической стойкостью при резких перепадах температуры, низким омическим сопротивлением, а также хорошими механическими сво11ствами. Теплопроводность искусственного графита выше теплопроводности многих металлов и сплавов, в частности свипца и хромоннкелевых сталей, в 3—5 раз. По этой причине примепеиие графита особенно эффективно для изготовления из пего тенлообмепной аппаратуры, предназначенной для эксплуатации в условиях воздействия таких агрессивных сред, как серная кислота определенных концентраций, соляная и плавико- [c.449]


    По свидетельству Л. Н. Петрова [3], формные сплавы, применяемые при эмульсионном травлении, не пассивируются в азотной кислоте той концентрации, в которой она используется в этом процессе. Для цинковых сплавов это объясняется их слабой склонностью к пассивации, а в случае сплава магния МА-2-2М пассивность не наступает, по-видимому, из-за высокой начальной скорости растворения. При подаче травящего раствора на пластину под определенным давлением, т. е. в гидродинамических условиях, пассивация металла тем более нереальна, так как с интенсификацией подачи агрессивной среды критическая плотность тока, при которой электрон внезапно переходит в пассивное состояние, существенно возрастает [26]. Углеводороды и ПАВ не относятся к пассиваторам и поэтому при переходе от растворения в кислоте к эмульсионному травлению возможность пассивации сплавов исключается. [c.114]

    Поскольку жидкое стекло на поверхности, например, металла может образовывать пленку щелочного силиката и геля, кремниевой кислоты, его с успехом используют как антикоррозионное средство. Таким образом можно защитить алюминий от действия агрессивных сред. Если погрузить алюминий в раствор жидкого стекла, то на его поверхности, благодаря взаимодействию с металлом, будет оседать устойчивый кремнегель в виде защитной пленки. Силикатная обработка повышает устойчивость и алюминиевых сплавов, а также металлического цинка. Такое же противокоррозионное действие оказывает силикатизация на металлический свинец, железо, что используют, например, для предотвращения отложения железистых соединений на внутренней поверхности водопроводных труб или для защиты котлов от образования накипи. Известно также использование жидкого стекла как антикоррозионной защиты в конденсационных установках холодильных машин и в электролитических ваннах, где оно снижает разъедание железного электрода. Таким образом, коллоидные кремнеземистые пленки, образующиеся на поверхности, обусловливают применение жидкого стекла как весьма эффективного антикоррозионного средства во многих отраслях промышленности. [c.133]

    На основании анализа опубликованных данных и наших исследований можно сделать заключение, что воздух, который не оказывает заметного влияния на усталость гладких образцов и который обычно принимают за эталонную среду при сравнении агрессивности сред, существенно снижает сопротивление усталостному разрушению металлов по сравнению с вакуумом или очищенными газами. Вода и водные растворы солей и кислот также увеличивают скорость развития усталостных трещин в сплавах на основе железа, алюминия, титана и других металлов. [c.86]


    Пассивность, достигаемая электрохимическим путем с помощью анодной поляризации различных металлов постоянным током (анодная пассивность), нашла широкое практическое применение она является основой анодной защиты. Анодная защита металлов и сплавов является одним из достижений последних лет в борьбе с коррозией металлов в агрессивных средах, например в горячих концентрированных кислотах, щелочах и солях. [c.46]

    Широкое применение платиновые металлы и сплавы нашли как коррозионно-стойкие материалы. Добавка 10% иридия к платине повышает ее химическую стойкость и твердость втрое. Такие сплавы обладают исключительной коррозионной стойкостью, из них делают жаростойкие тигли, выдерживающие сильный нагрев в агрессивных средах, в них выращивают кристаллы для лазерной техники. Эти сплавы применяют также для изготовления хирургических инструментов и эталонов. Малые добавки иридия к титану и хрому резко повышают стойкость их к действию кислот. [c.410]

    Для изготовления аппаратов и труб, подверженных воздействию азотной кислоты, нитратов и других агрессивных сред, применяются высококремнистые чугуны — ферросилиды и антихлор, состав и свойства которых приведены в табл. 6. Антихлор стоек против соляной кислоты, интенсивно разрушающей большинство конструкционных металлов и сплавов (в том числе и ферросилиды). [c.25]

    Искусственным, или так называемым ускоренным испытаниям металлы и сплавы (их покрытия) подвергают в средах, имитирующих условия их эксплуатации. Так, например, изделия для химической промышленности испытывают в агрессивных средах (кислотах, щелочах, расплавах и т. д.) с уч ом рабочих давлений, температуры, аэрации, наличия парожидкостной фазы и других факторов. [c.245]

    В химической и нефтяной промышленности изделия из кокса находят все большее применение как заменители изделий из дефицитных металлов и их сплавов при изготовлении теплообменной аппаратуры, конденсаторов и трубопроводов, работающих в агрессивных средах кислот и щелочей [1]. [c.10]

    Это весьма важное наблюдение, так как оно подсказывает два пути предотвращения коррозии можно замедлить либо реакцию окисления, либо реакцию восстановления. При прочих равных условиях э( фект будет одинаковым. Например,ингибиторы,как это показано в разд. 3.4, могут замедлять либо анодную, либо катодную реакции или в некоторых случаях и ту и другую. Обеспечение баланса.между этими двумя реакциями также важно при любом анализе проблемы коррозии. Коррозия металла связана с существованием легко восстанавливаемых частиц, и их удаление может существенно снизить агрессивность среды. Например, медные сплавы обычно не выделяют водорода и обладают существенной стойкостью к кислотам, содержащим в качестве окислителя только ионы водорода. [c.81]

    Ванадий, ниобий и тантал являются перспективными металлами для создания сплавов, работающих при температурах, более высоких, чем никелевые и кобальтовые жаропрочные сплавы. Высокая жаропрочность сплавов этих металлов сочетается с хорощими технологическими свойствами кроме того, они обладают высокой коррозионной стойкостью в ряде агрессивных сред. Ниобиевые и танта-ловые сплавы весьма стойки в морской воде, в азотной и соляной кислотах, в контакте с рядом жидких металлов. Некоторые сплавы ниобия и тантала отличаются особыми физическими свойствами высокой сверхпроводимостью и хорошей эмиссионной способностью [c.130]

    В среде фосфорных кислот коррозии и разрушению подвергаются многие металлы и сплавы, керамика, резина, пластмассы. Коррозионная активность фосфорных кислот с повышением температуры резко возрастает. Влияние увеличения концентрации неоднозначно. В области полифосфорных кислот агрессивное воздействие на ряд металлов существенно снижается органические компоненты замазок в этих условиях могут дегидратироваться и терять связующие свойства. Примеси, содержащиеся в фосфорной кисло- [c.191]

    Углеродистая сталь. Среди применяемых в технике распространенных металлов и сплавов углеродистая сталь является единственным металлом, который необходимо защищать против атмосферной коррозии покрытиями из других металлов или из неметаллических материалов. Стойкость углеродистой стали в серной кислоте низких и средних (50—70%) концентраций ниже, чем у других распространенных металлов, кроме цинка. Однако в концентрированной серной кислоте (выше 70%) углеродистая сталь имеет удовлетворительную стойкость при обычных температурах и небольших скоростях движения кислоты. При этих условиях сталь подвергается равномерной коррозии на глубину менее 0,5, мм год. Такая незначительная глубина коррозии объясняется плохой растворимостью в концентрированной серной кислоте при низких температурах окислов и сульфатов трехвалентного железа, образующихся на поверхности металла и защищающих его от дальнейшего контакта с агрессивной средой. [c.171]


    В производстве трихлоруксусной кислоты наиболее агрессивной средой является реакционная масса в реакторах окисления 1, 2, 3. Агрессивность ее определяется совместным присутствием концентрированной азотной кислоты, трихлоруксусной кислоты (концентрация которой по ходу реакции возрастает до 92%) и хлораля. Агрессивное действие последнего в данной среде, содержащей не менее 10% Н2О (вода образуется в процессе протекания реакции) по отношению к металлам и сплавам сказывается весьма значительно. [c.178]

    Коррозионные процессы протекают в самых различных средах в атмосфере, морской и речной воде, почве, при воздействии газов, высокой температуры, кислот, щелочей и т. д. Поэтому одной из первостепенных задач снижения потерь металлов и сплавов от коррозии является применение новых металлических (титан, молибден, тантал и др.) и неметаллических материалов, стойких к воздействию агрессивных сред, высоким температурам, давлению. [c.8]

    Смеси трихлорбензола и метанола в условиях насыщения их хлористым водородом (табл. 13.6) обладают также высокой коррозионной активностью. Метанол аналогично воде хорошо растворяет хлористый водород, образуя агрессивную среду (НС СНзОН). Из данных табл. 13.6 видно, что среды, содержащие влажный технический метанол, более агрессивны по отношению к металлам и сплавам, чем среды с обезвоженным метанолом. Это объясняется тем, что технический метанол содержит до 5% НгО и при пропускании хлористого водорода образуется одновременно два коррозионных агента — НС -СНзОН и соляная кислота. [c.293]

    На коррозионное поведение металлов оказывают влияние как внешние факторы (некоторые рассмотрены в 4), так и внутренние. Известный факт значительного уменьшения коррозии обычной стали при легировании ее никелем и хромом подчеркивает большое значение одного из внутренних факторов — химического состава сплава. Сплав железа с 18% хрома и 8% никеля носит название нержавеющей стали. Число марок нержавеющих сталей велико, что свидетельствует о большом различии их свойств, в том числе и коррозионных. Конечно, термин нержавеющая сталь может быть применен лишь для сред средней агрессивности, таких как разбавленные растворы кислот, естественные водные растворы и др. Вместе с тем существуют такие агрессивные среды, в которых и нержавеющие стали быстро разрушаются. Поэтому говорить о стойкости того или иного сплава, не учитывая среду, в которой определяется его коррозионное поведение, нельзя. Ведь даже такой коррозионно-стойкий в обычных условиях металл, как золото, оказывается нестойким в царской водке, смеси соляной и азотной кислот (3 1). [c.27]

    Смазка СК-2-06 химически инертна. Она совместима практически с любыми черными и цветными металлами, сплавами, полимерами и резинами. Не растворима в кислотах, спиртах, щелочах, углеводородах и др. Применяется в арматуре трубопроводов, резьбовых соединениях и некоторых узлах трения при контакте с агрессивными средами. [c.251]

    Коррозионное растрескивание зависит от конструкции аппаратуры, характера агрессивной среды, строения и структуры металла или сплава, температуры и т. д. Например, коррозионное растрескивание углеродистых сталей очень часто происходит в щелочных средах при высоких те.мпературах нержавеющих сталей — в растворах хлоридов, медного купороса, ортофосфорной кислоты алюминиевых и магниевых сплавов — под действием морской воды титана п его сплавов — под действием концентрированной азотной кислоты и растворов 1 ода в метаноле. Следует отметить, что в зависимости от природы металла или сплава и свойств агрессивной среды существует критическое напряжение, выше которого коррозионное растрескивание наблюдается часто. [c.12]

    Не все металлы и сплавы в одинаковой степени разрушаются агрессивными средами. Одни разрушаются быстрей, другие в тех же условиях оказываются практически устойчивыми в течение длительного времени. Однако нет металлов, совершенно не подвергающихся коррозии. Например, одним из наиболее устойчивых металлов является платина, но и она при погружении в смесь азотной и соляной кислот разрушается. Алюминий устойчив к воздействию крепкой азотной кислоты (поэтому его используют для изготовления цистерн и хранилищ под азотную кислоту), но если в алюминиевые аппараты залить соляную кислоту или щелочные растворы, то они очень быстро разрушат этот металл. [c.48]

    Цирконий. Этот металл и сплавы на его основе в настоящее время приобретают исключительно важное значение. Они обладают высокой коррозионной стойкостью во многих агрессивных средах при повышенных температурах и давлении, а также хорошими механическими свойствами. Применяются для изготовления оборудования в производстве соляной кислоты. [c.27]

    Применяемая в промышленном строительстве обычная сталь при действии на нее многих кислот и растворов солей быстро разрушается. Для повышения ее коррозийной устойчивости в состав сплава вводят добавки некоторых металлов (хрома, никеля и др.), увеличивающие стойкость стали в агрессивных средах. Однако такие стали, называемые легированными, значительно дороже обычных и поэтому применяются только для наиболее ответственной аппаратуры. Для изготовления строительных конструкций легированные стали пока не используются. [c.11]

    Керамические материалы обладают ценными конструкционными свойствами. Это обусловливает все возрастающее применение их в качестве деталей и изделий, предназначенных для работы в жидких агрессивных средах (кислотах, щелочах, расплавах и растворах солей, расплавленных металлах и сплавах). [c.129]

    Фторопласты обладают исключительно высокой химической стойкостью. Фторопласт-4 — наиболее химически стойкий материал из всех известных пластических масс, благородных металлов, стекол, фарфора, эмалей, нержавеющих сталей и сплавов. До сих пор не известны ни растворитель для фторопласта-4, ни вещество, в котором он хотя бы набухал, даже при повышенной температуре. Весьма стойким в обычно встречающихся агрессивных средах является также фторопласт-3. Он растворяется только в некоторых органических веществах (бензол, толуол, ксилол, четыреххлористый углерод), причем лишь при температурах выше точки кипения, т. е. при нагревании под давлением. Число сред, в которых фторопласт-3 обнаруживает некоторое набухание, также мало. К таким средам относятся царская водка, олеум, концентрированная азотная кислота и крепкие щелочи. [c.78]

    Малая стойкость металлов и их сплавов к кислотам издавна слу -жила причиной поисков кислотостойких неметаллических материалов. В настоящее время известно много органических и минеральных материалов, стойких к различным реагентам. Из материалов минерального происхождения применяют керамику, кислотоупорные замазки и кислотоупорную эмаль из материалов органического происхождения — пластические массы, резину, графит, лаковые покрытия. Промышленностью пластических масс освоены методы изготовления аппаратов, трубопроводов и арматуры из различных синтетических полимерных материалов, стойких к действию всевозможных агрессивных сред. Однако термическая стойкость этих материалов значительно ниже, чем у металлов. [c.16]

    Двухфазными сплавами являются многие металлы, применяемые в химическом машиностроении, например кремнистые чугуны, сплавы алюминия с кремнием (силумины), высокоуглеродистые стали (содержащие 0,9% углерода), некоторые бронзы. Принято считать, что двухфазные сплавы значительно менее устойчивы в коррозионном отношении, чем однофазные (твердые растворы). Это, однако, не всегда подтверждается на практике. Так, например, известна высокая стойкость кремнистых чугунов в серной кислоте, силумина в ряде агрессивных сред, двухфазных алюминиевых и кремнистых бронз в серной кислоте и т. п. [c.57]

    В первом случае после действия агрессивной среды взвешивают образцы, обрав все продукты коррозии во-втором — необходимо все прод укты коррозии удалить. Если не удается собрать все продукты коррозии или они удалены не полностью, образец протирают до полного удаления продуктов коррозии. Если их при этом также не удается удалить, то прибегают к травлению иоверхности металла такими реагентами, которые растворяют только продукты коррозии, но ие металл. В частности, с поверхности алюминия продукты коррозии можно удалять 5%- или 6%-ным раствором азотной кислоты. Для стали можно рекомендовать 10%-иый раствор винно- или лимоннокислого аммония, нейтрализоваииого аммиаком (температура раствора 25— 100° С) для свинца, цинка и оцинкованной стали — насыщенный раствор уксуснокислого аммония, нейтрализованный аммиаком для меди и медных сплавов—5%-ный раствор серной кислоты, имеющий температуру 10—20 С. [c.337]

    ТАНТАЛ (Tantalum назван по имени героя древнегреческой мифологии Тантала) Та — химический элемент V группы 6-го периода периодической системы элементов Д. И, Менделеева, п. н. 73, ат. м. 180,9479. Т. открыт в 1802 г. Экебергом. Природный Т. состоит из двух стабильных изотопов, известны 13 радиоактивных изотопов. Т.— металл серого цвета со слегка синеватым оттенком, т. пл. 2850° С, твердый, очень устойчив к действию кислот и других агрессивных сред, превосходит в этом даже платину. Получают Т. из тантало-ниобиевых руд. Т. в соединениях проявляет степень окисления +5. Используется для изготовления химической посуды, фильер в производстве искусственного во-токна, в хирургии для скрепления костей при переломах, для изготовления жаростойких, твердых и тугоплавких сплавов для ракетной техники и сверхзвуковой авиации, для изготовления электролитических конденсаторов, выпрямителей и криотронов, нагревателей высокотемпературных печей, арматуры электродных ламп, в ювелирном деле и др. [c.244]

    Приведенные данные показывают, что применение нелегированного тантала оправдано лишь при эксплуатации его в кипящей серной кислоте с концентрацией не менее 70% или в кипящей фосфорной кислоте с концентрацией не менее 80%. Во всех других случаях использовать сплавы тантала или других металлов. Наиболее агрессивная среда для тугоплавких металлов — концентрированная серная кислота для работы в такой кислоте пригодны ли1пь сплавы Та—Nb с высоким содержанием тантала (табл. 16). [c.83]

    Поверхность Ag,Аи-сплавов, содержащих более 50 ат.%1 золота и растворяющихся в кипящей концентрированной азотной кислоте, покрывается слоем практически чистого золота [91, 168]. Отметим, что и многокомпонентные сплавы, содер-- жащие Au,Pd и другие благородные металлы, полностью коррозионно устойчивы в агрессивных средах при суммарном содержании благородных компонентов свыще 50—55 ат.% [173]. Когда же содержание электроположительной составляющей ниже указанного предела, на поверхности корродирующих или аноднорастворяющихся сплавов присутствует, как уже отмечалось, электроотрицательный компонент. В итоге кинетика расворения сплава определяется факторами, влияющими на кинетику растворения чистого электроотрицательного компонента [20]. [c.167]

    Многие металлы находятся в пассивном состоянии в некоторых агрессивных средах. Хром, никель, титан, цирконий легко переходят в пассивное состояние и устойчиво его сохраняют. Часто легирование металла, менее склонного к пассивации, металлом, пассивирующимся легче, приводит к образованию достаточно хорошо пассивирующихся сплавов. Примером могут служить разновидности сплавов Ре—Сг, представляющие собой различные нержавеющие и кислотоупорные стали, стойкие, например, в пресной воде, атмосфере, азотной кислоте и т. д. Для практического использования пассивности нужно такое сочетание свойств металла и среды, при котором последняя обеспечивает значение стационарного потенциала, лежащего в области Афп. Подобное использование пассивности в технике защиты от коррозии известно давно и имеет огромное практическое значение. [c.250]

    I3 всех известных пластических масс фтороиласт-4 является наиболее химически стойким материалом. Его устойчивость к химическому воздействию превышает даже стойкость благородных металлов (золота и платины), стекла, фарфора, эмали, специальных сталей н сплавов и вообще всех материалов, применяемых для защиты от коррозии в самых сильнодействующих агрессивных средах. Наиболее агрессивные химические вещества — крепкие и разбавленные кислоты, концентрированные растворы щелочей, самые сильные окислители — не оказывают на фторопласт-4 никакого действия даже при высоких температурах. [c.54]

    Большое значение для промышленности СК имеет применение титана. С помощью этого металла могут быть успешно решены острые коррозионные проблемы в производстве таких каучуков, как наириты, тиоколы, бутилкаучук, где встречаются хлороргани-ческие соединения, склонные к гидролизу с образованием соляной кислоты. С большим экономическим эффектом титан можно использовать и в тех цехах, где в перерабатываемых средах содержатся агрессивные хлористые соли, например хлористый аммоний или хлорное железо. Среди многочисленных сплавов титана особенно высокой коррозионной стойкостью в солянокислых средах [c.9]

    Ряд процессов, например водное хлорирование, а также процессы со средами, в которых содержатся кислородные соединения хлора, не могут быть осуществлены без аппаратов или их отдельных деталей, изготовленных из титана. В этих средах скорость коррозии титана не превышает 0,01 мм1год. В значительно большей степени применяют технически чистый титан мap ки ВТ1-1 и мало-легированный титановый сплав марки 0Т4, из которых изготовляют теплообменники, колонные аппараты, резервуары, подогреватели и другие аппараты. ВТГ-1 в контакте со многими сплавами и металлами в большинстве агрессивных сред (за исключением азотной и серной кислот) является катодам и спосо1бствует убыстрению коррозии металла, контактирующего с ним. Коррозионная стойкость сплава марки ОТ-4 в некоторых средах ниже, чем титана мap ки ВТ1-1. [c.24]

    При введении в коррозионную среду ряда ингибиторов скорость коррозии металлов и сплавов уменьшается (см. гл. XIV). Для защиты от коррозии стальных изделий в замкнутых охладительных и отопительных системах используют ингибитор Антикор-П, представляющий собой комплексное соединение борной кислоты с глюко-натом кальция или натрия. В нейтральных водных и водно-нефтяных сильно минерализованных средах и в системах утилизации сточных вод на нефтепромыслах для защиты от коррозии стальных деталей применяют ингибиторы ИКБ-4 и ИКБ-8, представляющие собой продукты на основе синтетических жирных кислот. Эти ингибиторы вводят в агрессивные среды в виде водных растворов и растворов в нефтепродуктах. [c.186]

    Высокой стойкостью в агрессивных средах обладают медь и ее сплавы. Например, оловянистые латуни марок Л070-01 и Л060-01 широко применяют для изготовления труб и решеток, для создания защитного слоя стальных решеток секционных конденсаторов и холодильников, используемых в процессах переработки нефти (с большТШ содержанием солей и небольшой концентрацией соляной кислоты) при температуре около 100° С. Другие цветные металлы успешно заменяются неметаллическими материалами и покрытиями неорганического и органического происхождения. Области применения цветных металлов указаны в Приложении 3. [c.16]

    ПТФЭ — белый, непрозрачный термопластичный полимер, выпускаемый как в виде тонкого или волокнистого порошка, так и в виде водной суспензии, содержащей 50—65% тонкодисперсного порошка. Этот полимер обладает уникальным комплексом физических и химических свойств. Он не растворяется ни в одном из известных органических растворителей и по химической стойкости превосходит все известные материалы (золото, платину, стекло, фарфор, эмаль, специальные стали и сплавы). Он стоек ко всем минеральным и органическим кислотам, щелочам, окислителям, газам и другим агрессивным средам. Разрушение ПТФЭ наблюдается лишь при действии расплавленных щелочных металлов (и растворов их в аммиаке), элементарного фтора и трехфтористого хлора при повышенных температурах. Вода не смачивает фторопласт-4 и не оказывает никакого воздействия на него при самом длительном испытании. [c.87]


Смотреть страницы где упоминается термин Кислоты как агрессивные среды на металлы и сплавы: [c.14]    [c.17]    [c.257]    [c.270]    [c.78]    [c.80]    [c.49]    [c.73]    [c.627]   
Защита промышленных зданий и сооружений от коррозии в химических производствах (1969) -- [ c.3 , c.11 , c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Агрессивность среды

Агрессивные сплавов

Кислоты Ба металлы

Кислоты металлы и сплавы

Металлы сплавы

Сплавы и металлы металлов



© 2024 chem21.info Реклама на сайте