Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дыхание регуляция

    Регуляция дыхания, разобщение и обменные реакции [c.400]

    Хенмане (Гейианс) К. (Бельгия) Открытие роли каротидных синусов и аорты в регуляции дыхания и кровообращения [c.780]

    При изучении регуляции энергетического обмена клетки отправным пунктом, на котором обычно строится исследование, является открытый Пастером феномен подавления менее эффективного в энергетическом отношении брожения более эффективным дыханием. Выяснению механизма этого регуляторного феномена посвящены многочисленные глубокие исследования и покоящиеся на этих исследованиях плодотворные гипотезы. Весьма существенно, однако, что объектом такого рода исследований обычно служат переживающие in vitro интактные клетки — взвеси свободных клеток или срезы тканей. Эти интактные клетки в момент исследования в функциональном отношении находятся в состоянии относительного покоя, и очевидно вследствие этого пастеровский эффект (П. Э.) выражен у них в полной мере. Если же проследить метаболизм таких же клеток или клеток других животных тканей в условиях активно функционирующего целого организма, то оказывается, что их энергетический обмен характеризуется не пастеровским торможением гликолиза, а как раз обратным состоянием — сосуществованием дыхания иаэробного гликолиза. Многие авторы проходят мимо этого факта, хотя хорошо известно, что все ткани животного организма при напряженной работе in situ обнаруживают наряду с повышенным поглощением кислорода высокий аэробный гликолиз, иногда в 1000 раз превосходящий по скорости тот уровень гликолиза, который отмечается в покоящейся ткани. [c.106]


    Декарбоксилаза ароматических аминокислот получена в чистом виде (мол. масса 112000), кофермент—ПФ. В больших количествах она содержится в надпочечниках и ЦНС, играет важную роль в регуляции содержания биогенных аминов. Образующийся из 5-окситриптофана серотонин оказался высокоактивным биогенным амином сосудосуживающего действия. Серотонин регулирует артериальное давление, температуру тела, дыхание, почечную фильтрацию и является медиатором нервных процессов в ЦНС. Некоторые авторы считают серотонин причастным к развитию аллергии, демпинг-синдрома, токсикоза беременных, карциноидного синдрома и геморрагических диатезов. [c.443]

    Дыхательным контролем называется регуляция скорости дыхания  [c.558]

    Следовательно, ПД-комплекс представляет собой сложную, саморегулирующую систему, которая играет важную роль как в биологическом контроле дыхания и энергетическом обеспечении организма, так и в регуляции общих путей катаболизма в целом. [c.264]

    В последние полтора десятилетия в биологии произошли события, повлекшие за собой фундаментальные изменения наших представлений о функционировании самых различных биологических систем. Было обнаружено, что оксид азота - NO, является одним из универсальных и необходимых регуляторов функций клеточного метаболизма [1-12]. Неожиданно оказалось, что газ, и газ токсичный, молекула которого является, к тому же, свободным радикалом, соединением коротко-живущим и легко подвергающимся самым разнообразным химическим трансформациям, непрерывно ферментативно продуцируется в организме млекопитающих, оказывая ключевое воздействие на ряд физиологических и патофизиологических процессов. Оксид азота участвует в регуляции тонуса кровеносных сосудов, ингибирует агрегацию тромбоцитов и их адгезию на стенках кровеносных сосудов, функционирует в центральной и вегетативной нервной системе, регулируя деятельность органов дыхания, желудочно-кишечного тракта и мочеполовой системы. Существуют две стороны проблемы NO в организме млекопитающих. Первая - это образование NO в организме в недостаточных количествах, что приводит к ряду тяжелых последствий (сердечно-сосудистые, инфекционные, воспалительные заболевания, тромбозы, злокачественные опухоли, заболевания мочеполовой системы, мозговые повреждения при инсультах и др.). Другая, и не менее важная, сторона проблемы - продукция в организме избыточных количеств оксида азота. Из-за "вездесущей природы" NO, способного в результате простой диффузии проникать практически через любые биологические мембраны, слишком большой выброс этого медиатора приводит к целому ряду тяжелых патологических состояний. К таким болезням относятся септический шок (остро развивающийся, угрожающий жизни патологический процесс, обусловленный образованием очагов гнойного воспаления в органах и тканях), нейродегенеративные заболевания, различные воспалительные процессы. Поскольку хорошо известно, что генерация эндогенного NO в организме - результат окисления L-аргинина ферментами NO-синтазами, очевидно, что во избежание перепродукции этого соединения необходимо использование ингибиторов NOS. [c.30]


    Ниже мы увидим, что регуляция активности пируватдегидрогеназного комплекса составляет один из важных элементов в биологическом контроле дыхания. [c.482]

    Функциональное значение флавоноидных соединений для растений многообразно и не поддается однозначному описанию. Они играют важную роль в регуляции жизненно важных ферментных систем, особенно связанных с фотосинтезом и дыханием растительных клеток. Например, часто встречающийся так называемый кверцитин-глюкозид-кумарат 3.400 действует как антагонист гиббереллинов (см. разд. 2.3.6.1) и регулятор интенсивности фотосинтеза. Велико значение флавоноидов и в экологических взаимоотношениях растений с окружающим миром. Флавоны и флавонолы имеют желтую окраску и участвуют в создании цветовой гаммы цветковых растений. Многие из флавоноидов проявляют антифидантные, противобактериальные и противовирусные свойства. [c.376]

    В случае накопления кислот в крови при нарушении обмена веществ или при поступлении их в больших количествах с пищей уменьшается количество НСО " (Н+ связывается с НСОг), Однако значение pH крови остается постоянным, так как повышение кислотности крови увеличивает объем легочной вентиляции, что приводит к уменьшению парциального давления СО2. Буферное соотношение таким образом не меняется. При увеличении щелочности концентрация бикарбоната [НСО ] повышается, но уменьшение концентрации водородных ионов приводит к замедлению вентиляции легких, поэтому двуокись углерода накапливается в организме и буферное соотношение остается неизменным. Таким образом, механизмы регуляции дыхания стабилизируют буферное соотношение в бикарбонатном буфере. Чувствительность дыхательного центра к изменению pH очень велика. Уменьшение pH на 0,1 увеличивает объем вен- [c.20]

    Применение более сложных тестов и функциональных нагрузок позволило установить, что отравление сероводородом отражается на регуляции дыхания и. сердечной дея- I тельности. Ухудшение регуляции дыхания. Кратковременное и компенсирующееся, после вращения в центрифуге было найдено у крыс, отравленных меньшей концентрацией сероводорода. [c.697]

    В системах с прочным сопряжением дыхание зависит от присутствия фосфата и АДФ. Такая регуляция дыхания обнаружена почти так же давно, как и фосфорилирование в дыхательной цепи. [c.243]

    РЕГУЛЯЦИЯ ПРОЦЕССА ДЫХАНИЯ (ДЫХАТЕЛЬНЫЙ КОНТРОЛЬ) [c.365]

Фиг. 66. Регуляция дыхания в митохондриях животных и растений. Фиг. 66. Регуляция дыхания в <a href="/info/106061">митохондриях животных</a> и растений.
    Регуляция клеточного дыхания есть тонко сбалансированный процесс, хорошо описываемый в терминах равновесной термодинамики. Общие принципы регулирования сохраняются как для изолированных митохондрий, так и для клеточных систем, несмотря на существенные различия между ними в состоянии восстановленности дыхательных переносчиков и значениями фосфатного потенциала. Лимити (ующим звеном процесса является т.ер-минальная стадия взаимодействия цитохром с оксидазы с кислородом, которая ответственна эа кинетический контроль дыхания. Регуляция дыхания в области низких значений рОг осуществляется через изменение редокс-состояния цитохрома с и отношение [АТФ]/[АДФ] [Фн] цитозоля, что и определяет вариабельность кажущейся Ям(0) в клетке, составляющую один из механизмов ее приспособления к условиям кислородной недостаточности. Термин критическое напряжение кислорода является понятием относительным — существует широкий диапазон значений рОг, в пределах которых ткань может изменять свою метаболическую активность, чтобы компенсировать субопти-мальное снабжение кислорода. [c.116]

    Регуляция дыхания лежит в основе одной из теорий фосфорилирования в дыхательной цепи. Эта теория рассмотрена на стр. 249. [c.246]

    Акцепторный контроль. Регуляция интенсивности дыхания за счет изменения доступности ADP-акцептора фосфата. [c.1007]

    Организм человека или животного подлежит регуляции как целостная система. Воздействие на одни органы должно сказываться на поведении других. Иначе организм не мог бы существовать, не мог бы приспособляться к внешним условиям. Допустим, что наши чувства — зрение, слух — сообщили головному мозгу о наличии опасности. Если бы мобилизация организма происходила лишь в результате сознательного рассуждения, то реакция на мгновенную опасность могла бы оказаться слишком медленной. Но организм реагирует на опасность и непроизвольно — чувством страха. Учащаются сердцебиение и дыхание, уменьшается болевая чувствительность, мобилизуются мышцы. [c.309]

    Образующиеся биогенные амины — триптамин, серотонин, дофамин обладают сильным фармакологическим действием на множество физиологических функций человека и животных. Так, триптамин и серотонин оказывают сосудосуживающее действие. Кроме этого, серотонин участвует в регуляции артериального давления, температуры тела, дыхания и почечной фильтрации, является нейромедиатором, который вызывает изменение поведения, например при шизофрении. Дофамин, возможно, сам является нейромедиатором, а также предшественником широко известного медиатора норэпинефрина и гормона адреналина. Источником ДОФА в организме является тирозин, который под действием специфической гидроксилазы превращается в 3,4-диоксифенилаланин. Тирозингидроксилаза открыта в надпочечниках, в тканях мозга и периферической нервной системы. [c.384]


    Кожа насекомых обеспечивает регуляцию водного режима, выполняет функции дыхания и выделения, защищает тело от механических повреждений, проникания ядовитых веществ. [c.11]

    Интенсивный Г. происходит в скелетных мышцах, где он поставляет энергию для мышечных сокращений, а также в печени, сердце, мозге животных и человека. В клетках осуществляется тонкая регуляция окислит, и анаэробного обмена Подавление Г. дыханием в присут. О2 (эффект Пастера) обеспечивает клетке наиб, экономный механизм образования богатых энергией соединений. В тканях, где такой эффект отсутствует (напр., в эмбриональных и опухолевых), Г. протекает очень активно. В нек-рых тканях с интенсивным Г. наблюдается подавление тканевого дыхания (эффект Крабтри). [c.580]

    Сопряжение процессов дыхания и фосфорилирование регулируется в организме в зависимости от физиологического состояния. Важную роль в регуляции этих процессов играют гормоны. Так, тироксин способствует разобщению этих процессов, а инсулин повышает сопряжение. [c.212]

    Большая часть изложенного в этой главе материала была посвящена применению ростовых веществ для регуляции созревания, однако иногда эти вещества могут быть использованы для того, чтобы снять влияние других регуляторов роста растений на ускорение созревания или задержать естественное созревание плодов или овощей. Например, такие ауксины, как НУК, 2,4-Д и 2,4,5-Т, применяемые для предотвращения предуборочного опадения плодов у яблони, активируют дыхание у нескольких сортов, что приводит к снижению лежкости яблок и, конечно, уменьшает практическую ценность применения этих веществ. Еще в 1947 г. Спок и др. [1014, 1015] показали, что опрыскивание яблонь гидразидом малеиновой кислоты и одним из ауксинов сводит до минимума влияние на ускорение созревания, хотя желаемое действие ауксина при этом не снималось. [c.109]

    При раковых заболеваниях, саркомах, лейкозах резко изменяется природа биологического дыхания клеток, изменяется соотношение гликолиза и дыхания, наблюдается изменение интенсивности внутриклеточного метаболизма и его регуляции — изменение пастеровского эффекта и Кребтри-эффекта. [c.146]

    В присутствии кислорода дрожжи переключаются на аэробное дыхание, при котором образуется в 20 раз больше биомассы и синтезируется значительно больше АТФ. Брожение, соответственно, подавляется. Это так называемый эффект Пастера — один из классических примеров регуляции обмена веществ. [c.119]

    Регуляцию дыхания можно лучше всего показать на митохондриях животных (фиг. 66, А). Никакого поглощения кислорода не происходит, когда митохондрии инкубируют в присутствии субстрата (глутаминовой кислоты), фосфата и кислорода. Быстрое поглощение кислорода начинается только после добавления АДФ и продолжается до тех пор, пока концентрация АДФ не уменьшится до низкого уровня в результате фосфорилирования в дыхательной цепи. Эту последовательность явлений можно повторить, снова добавляя АДФ. В митохондриях растений (фиг. 66, Б) заметное поглощение кислорода происходит и в отсутствие АДФ. Это показывает, что использованные в данной работе митохондрии растений не имели таких прочно сопряженных систем, как препараты митохондрий из животных тканей. Добавление АДФ к митохондриям растений вызывает значительное усиление поглощения кислорода. Затем интенсивность поглощения кислорода постепенно уменьшается по мере того, как добавленный АДФ фосфорилируется в АТФ. Дальнейшие прибавки АДФ приводят к повторению всей последователь- [c.244]

    Гемоглобин (ННЬ), попадая в капилляры легких, превращается в оксигемоглобин (ННЬО ), что приводит к некоторому подкислению крови, вытеснению части Н,СОз из бикарбонатов и понижению щелочного резерва крови . Перечисленные буферные системы крови играют важную роль в регуляции кислотно-основного равновесия. Как отмечалось, в этом процессе, помимо буферных систем крови, активное участие принимают также система дыхания и мочевыделительная система. [c.589]

    Тот факт, что при инкубации ткани печепи с тироксином увеличивается интенсивность дыхания и теплообразования и не изменяется концентрация АТР, согласуется с утверждением, что тироксин является разобщителем окислительного фосфорилирования. Разобщающие агенты понижают отношение Р/О в тканях это заставляет ткани увеличивать интенсивность дыхания, чтобы удовлетворить потребность в АТР. Наблюдаемое выделение тепла могло быть обусловлено также повышением скорости утилизации АТР тканью, стимулированной тироксином. В такой ткани возросшая потребность в АТР удовлетворяется за счет повышения уровня окислительного фосфорилирования (дыхания), что сопровождается выделением тепла. Несмотря на многочисленные исследования, детали регуляции тиреоидными гормонами скорости аэробного метаболизма остаются загадкой. [c.1000]

    Влияние сероводорода на животных оценивалось с помощью различных методов и тестов. Исследовалась регуляция дыхания и кровообращения при функциональных нагрузках (ортостатическая проба, вращение в центрифуге), определялась активность дегидраз в тканях методом Тунбер-га, применялись такие интегральные тесты, как частичное голодание на фоне отравления, плавательная проба, измерялось кровяное давление, регистрировалась ЭКГ, проба Торна и велись наблюдения за общим состоянием и весом животных. [c.697]

    Влияние на уровне процессов, протекающих в цитоплазме торможение синтеза АТФ, разобщение окислительного фосфор ил иро-вания и дыхания, ингибирование процессов фотосинтеза и фотосинте-тического фосфорилирования задержка синтеза фитогормонов типа ауксинов, активация их распада, регуляция биологической активности фитогормонов. [c.117]

    Каков же механизм регуляторного переключения обмена, как осуществляется повышение скорости аэробного гликолиза и каким образом происходит его торможение Существующие представления о механизме П. Э. не отвечают на поставленные вопросы. В 1941 г. Линен [3] и Джонсон [4] независимо друг от друга выдвинули гипотезу о механизме П. Э. Эту гипотезу затем дополнили Линен [5] и другие авторы [6, 7], и в настоящее время она наиболее популярна, как это видно из дискуссии на симпозиуме по регуляции клеточного метаболизма, происходившем в Кембридже в 1958 г. Гипотеза связывает П. Э. с дыхательным фосфорилированием и с кругооборотом фосфата в клетке. Скорость гликолиза и дыхания лимитируется одним и тем же фактором — концентрацией неорганического фосфата и адениннуклеотидов. Химическое сродство ферментов дыхательного фосфорилирования ставит их при конкуренции за эти вещества в преимущественное положение по сравнению с ферментами гликолиза. В результате этого адениннуклеотиды и неорганический фосфат оказываются сосредоточенными на митохондриях (М), по месту локализации ферментов дыхательного фосфорилирования, и, следовательно, пространственно обособлены от ферментов гликолиза, локализованных в гиалоплазме [6, 7]. [c.107]

    В то время как дыхательная система, генерирующая АТФ, сосредоточена в митохондриях, другая энзиматическая система — система гликолитического фосфорилирования, также генерирующая АТФ, сосредоточена в гиалоплазме. Гликолитический распад углевода дает меньший выход АТФ по сравнению с окислительным распадом. Поэтому энергетически гликолиз менее выгоден, чем дыхание. В соответствии с этим, поксящаяся клетка черпает энергию только за счет дыхания, и гликолиз в ней отсутствует. Это явление называется эффектом Пастера. Но при напряженной работе клетки дыхательное фосфорилирование уже не покрывает энергетических затрат и тогда включается дополнительный генератор энергии — гликолиз. Таким образом, в клетке существует регуляция этих двух энергетических процессов. Было предложено много гипотез для объяснения механизма этой регуляции, но все эти гипотезы оказались недостатонными они не учитывали функции структурных элементов клетки. [c.184]

    В предшествующих главах, посвященных обмену веществ у микроорганизмов, неоднократно шла речь о регуляции метаболизма и роста факторами среды. Обнаруженное еще Пастером, подавление брожения атмосферным кислородом у дрожжей-превосходный пример такой регуляции, весьма детально изученный. Давно известно также, что некоторые ферменты, участвующие в расщеплении того или иного субстрата, образуются только в его присутствии. У денитрифицирующих бактерий нитратное дыхание может начаться лишь в отсутствие Oj кислород подавляет и образование нитратредуцирующей ферментной системы, и ее функцию. Изменение pH в культурах Enteroba ter или lostridium способно изменить ход брожения и повлиять на природу образующихся продуктов. У фототрофных бактерий кислород и свет влияют на синтез пигментов, В основе этих и многих других изменений, обусловленных средой, лежат специальные регуляторные механизмы. [c.472]

    Регуляция дыхания, вероятно, действует in vivo как механизм, приспосабливающий интенсивность дыхания к энергетическим потребностям клетки. В периоды быстрого распада АТФ (например, при синтезе белка) содержание АДФ и фосфата очень высоко и дыхание идет почти с максимальной интенсивностью. В то же время, когда потребность в АТФ мала (например, у покоящихся клеток), происходит накопление АТФ и убыль АДФ и фосфата, что приводит к снижению интенсивности дыхания. [c.245]

    Эффект Пастёра, изученный на яблоках Блекменом и Парийя [4], по мнению многих физиологов растений, проявляется при ресинтезе углеводов из органических кислот. Вычисления отношения [АТФ]/[АДФ], необходимого для заметного снижения скорости гликолиза, дали значения, приблизительно в 1000 раз большие, чем наблюдавшиеся в действительности. Следовательно, отношение [АТФ]/[АДФ] не может осуществлять эффективную регуляцию дыхания. Окислительное фосфорилирование могло бы уменьшить концентрацию АДФ до столь низкого уровня, при котором скорость гликолиза была бы ограниченной. Следовательно, происходило бы [c.245]

    Постоянная регуляция соотношения между фосфорилирующим и нефос-форилирующим дыханием определяет возможность использования энергии дыхания преимущественно для обеспечения специфических функций клетки или для теплообразования. " [c.250]

    Основная биохимическая функция тироксина (и близкого к нему трииодтиронина) заключается в регуляции интенсивности дыхания клеток. При недостаточном образовании тирок сина (что вызывается нехваткой йода или повреждением железы) наблюдается уменьшение частоты сердечных сокращений, понижение кровяного давления, слабость больные все время ощущают чувство холода. При сильной нехватке тироксина может наступить ожирение, так как значительная часть веществ пищи не иопользуется, а откладывается. [c.92]


Смотреть страницы где упоминается термин Дыхание регуляция: [c.28]    [c.665]    [c.31]    [c.441]    [c.371]    [c.80]    [c.243]    [c.245]    [c.50]    [c.485]    [c.107]    [c.170]    [c.326]   
Биохимия растений (1966) -- [ c.243 , c.245 , c.249 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.540 ]

Физиология растений (1989) -- [ c.161 , c.170 ]




ПОИСК





Смотрите так же термины и статьи:

Регуляция



© 2024 chem21.info Реклама на сайте