Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидроксильные группы поверхностные с пиридином

    Характерной особенностью изменения интенсивности полосы поглощения свободных гидроксильных групп поверхности кремнеземов при адсорбции является значительно больщая чувствительность этой характеристики адсорбционного взаимодействия по сравнению с изменением положения этой полосы поглощения. Так, если интенсивность полосы поглощения свободных гидроксильных групп поверхности при адсорбции пиридина изменяется в 40 раз, то соответствующее изменение частоты этой полосы поглощения (3750 см- ) составляет только 20% (см. табл. 12). Изменение интенсивности полосы поглощения гидроксильных групп при межмолекулярном взаимодействии в растворах с образованием водородной связи происходит максимально в 20 раз [39]. Возрастание интенсивности полосы поглощения поверхностных гидроксильных групп кремнеземов при адсорбции много больше, чем при растворении гидроксилсодержащих молекул в соответствующих растворителях. Например, величины отношения /в//с для гидроксильных групп фенола, растворенных в бензоле и диэтиловом эфире, составляют 2,1 и 6,9 [39], а в случае адсорбции бензола и диэтилового эфира на гидроксилированной поверхности кремнезема эти величины составляют 9 и 24 соответственно (см. табл. 12). Это объясняется не только различием свойств гидроксильных групп растворенных веществ и поверхности кремнезема, но и различием в свойствах самой водородной связи вследствие ориентирующего действия на молекулу адсорбционного поля. В случае раствора молекулы более подвижны и ориентация специфически взаимодействующих звеньев в меньшей степени зависит от остальных частей молекулы. [c.185]


    Базила с сотр. [38, 42] и Пери [20, 21, 56] выдвинули новые представления о структуре кислотных центров алюмосиликагелей, которые объясняют многие спектральные проявления адсорбции молекул алюмосиликагелями. Так, авторы работы [42] считают, что основными кислотными центрами являются электроно-акцепторные центры, связанные с поверхностными атомами алюминия в тройной координации. Проявления же кислотности типа Бренстеда обусловлены взаимодействием гидроксильной группы атома кремния с молекулой основания, адсорбированной на кислотном центре типа Льюиса. Подтверждением такой точки зрения на природу кислотности поверхности алюмосиликагелей Базила с сотр. считают полученные ими результаты по спектральному и. гравиметрическому исследованию адсорбции аммиака [38] и пиридина [42] алюмосиликагелем. Из этих результатов следует, что на поверхности алюмосиликагеля существует приблизительно одинаковое количество центров кислотности обоих типов. [c.331]

    Таким образом, в большинстве работ указывается на то, что обработка поверхности окиси алюминия содержащими фтор соединениями (максимальная концентрация фтора, составляет около 6 вес.% [30, 34]) приводит к замещению поверхностных гидроксильных групп и, возможно, части атомов кислорода атомами фтора. Изменение свойств окиси алюминия при фторировании объясняется [33, 35] увеличением концентрации на поверхности протонных кислотных центров. Так, в спектре пиридина, адсорбированного фторированной окисью алюминия, наблюдались полосы поглощения ионов пиридиния 3257, 3185 и 1550 см [33, 35] (рис. 120). При увеличении концентрации фтора на поверхности окиси алюминия происходит рост интенсивности полос поглощения иона пиридиния и уменьшение интенсивности полос координационно связанного пиридина 1620, 1580 и 1454 см- (рис. 120). [c.295]

    Пиридин, являясь более слабым основанием, по сравнению с аммиаком, реагирует только с сильными кислотными центрами поверхности. Специфическая адсорбция пиридина на поверхности кремнезема является молекулярной и происходит за счет образования водородных связей с поверхностными гидроксильными группами [41]. Окись алюминия обладает сильными кислотными центрами типа Льюиса и обнаруживает присутствие лишь незначительного количества протонодонорных центров, способных к образованию при адсорбции пиридина ионов пиридиния (см. главу УП1). [c.316]


    Отмечено [42], что адсорбированные молекулы воды удаляются после откачки образца уже при 150° С, в то время как хемосорбированные молекулы пиридина удаляются при этом лишь в незначительном количестве (см, рис, 127, кривая 4). Эти явления нельзя описать простой схемой блокировки молекулами воды апротонных центров и преврашения их в протонные. Действительно, адсорбция молекул воды приводит к увеличению числа возмущенных водородной связью поверхностных гидроксильных групп алюмосиликагеля [42], поскольку адсорбция воды сопровождается уменьшением интенсивности полосы поглощения 3745 см и возрастанием интенсивности полосы поглощения около 3500 см Такое изменение спектра при адсорбции воды на образце,, уже адсорбировавшем молекулы пиридина, отлично от случая адсорбции молекул воды при тех же условиях на исходной поверхности алюмосиликагеля [18]. На этом основании в работе [42] сделано предположение о том, что адсорбированные молекулы воды взаимодействуют одновременно с хемосорбированными молекулами пиридина и поверхностными гидроксильными группами, не вытесняя молекулы пиридина с кислотных центров поверхности. [c.319]

    При изучении адсорбции аэросилом молекул, способных образовывать водородные связи с гидроксильными группами поверхности, в далекой инфракрасной области спектра обнаружены полосы поглощения, которые были приписаны колебанию адсорбированных молекул относительно поверхности [22—25]. На рис. 181 приведено изменение спектра аэросила, предварительно откачанного при 500° С, после адсорбции воды [22]. Полоса поглощения с максимумом около 170 см исчезает после продолжительной откачки образца при комнатной температуре и приписывается колебанию по водородной связи связанных между собой молекул воды. Полоса поглощения с максимумом около 205 см , остающаяся в спектре после такой откачки образца, относится к колебаниям молекул воды относительно поверхностных гидроксильных групп вдоль направления водородной связи [22]. Полоса поглощения таких колебаний в случае адсорбированных молекул ацетона лежит около 50 м [23]. При адсорбции ацетона, пиридина [24] и ацетальдегида [25] наблюдается кроме того некоторое увеличение пропускания в области 100—200 см К Рост пропускания в этой области авторы объясняют разрывом водородной связи между соседними гидроксильными группами поверхности кремнезема при адсорбции молекул, способных к образованию водородной связи с поверхностными гидроксильными группами. [c.429]

    В другой работе Ярославский и Теренин (1949) изучили с помощью инфракрасной спектроскопии адсорбцию пористым стеклом бензола, толуола, анилина, пиридина и фенола. При адсорбции бензола и толуола узкая полоса поглощения поверхностных гидроксильных групп становится слабее и появляются полосы поглощения ароматических групп СН и групп СНз толуола. Не наблюдалось смещения этих полос поглощения по отношению к частотам полос этих молекул, растворенных в четыреххлористом углероде. [c.276]

    Базила и др. [9] также исследовали систему пиридин — алюмосиликат. Они получили обратное линейное соотношение между концентрациями адсорбированного пиридина и несвязанных водородной связью гидроксилов. В результате был сделан вывод, что адсорбированные молекулы пиридина связаны водородной связью с поверхностными гидроксилами и предложена модель поверхностной кислотности, в которой все кислотные центры льюисовские, а молекулы оснований, адсорбированных на льюисовских кислотных центрах, связываются водородной связью с поверхностными гидроксильными группами. Если эти гидроксильные [c.394]

    Для изучения поверхностных групп цеолитов с успехом применяется ИК-спектроскопия. На рис. 36 представлена ОН-об-ласть ИК-спектра цеолита N. g. Добавляемый пиридин связывается с образованием ионов пиридиния кислотными ОН-груп-пами, полоса поглощения которых лркит при 3670 см-. Поэтому интенсивность указанной полосы уменьшается при адсорбции пиридина. Гидроксильные группы, связанные с катионом (3600 СМ ), так же как концевые ОН-группы решетки (3750 СМ ) не обладают кислотными свойствами. [c.90]

    Бренстедовская и льюисовская кислотность двуокиси титана исследована с использованием диагностических адсорбатов и ИК-спектроскопии. Независимо от степени гидратации или гидроксилирования поверхности двуокись титана не обнаруживает бренстедовской кислотности в отношении аммиака или пиридина [77—79] однако некоторое количество гидроксильных групп анатаза имеет достаточно кислый характер, чтобы протониро-вать триметиламин [77]. Образование поверхностного бикарбоната [77] при адсорбции двуокиси углерода указывает на присутствие некоторого количества основных гидроксильных групп. Однако их основность весьма слаба, так как обезгаживание образца при 300 К разрушает бикарбонат. Превращение поверхностных ионов кислорода в гидроксильные группы при диссоциативной адсорбции воды также говорит о бренстедовской основности поверхности. Тем не менее поверхность двуокиси титана в водной среде может проявлять бренстедовскую кислотность (адсорбция NaOH) и основность (адсорбция Н3РО4). Считают [76], что эти функции связаны с присутствием двух типов гидроксильных групп. [c.69]


    Исследовано изменение спектра поверхностных гидроксильных групп пористого стекла при низкотемпературной адсорбции кислорода и азота [7]. В работах [8, 9] было изучено изменение полосы поглощения первого обертона валентного колебания поверхностных групп ОН пористого стекла, силикагеля и алюмосиликагеля при адсорбции на них молекул н-гексана, циклогек-сана, иодистого метила, хлороформа, четыреххлористого углерода, метанола, этанола, ацетона, диэтилового эфира, диоксана,. нитрометана, ацетонитрила, бензола, толуола, мезитилена, хлорбензола, бензальдегида, нитробензола, анилина, метиланилина, диметиланилина, метилфениламина, пиридина, четыреххлори-.стого олова. Подробное изложение полученных в этих работах результатов дано в главе 9 книги Литтла [11]. [c.150]

    Адсорбция пиридина образцом кабосила, пропитанным Р2О5, приводит к сильному уменьшению интенсивности полос поглощения SIOH и РОН и к появлению широкой полосы поглощения с максимумом около 3000 см . Появление этой полосы является следствием образования водородной связи между поверхностными гидроксильными группами и адсорбированными молекулами пиридина. Полосы поглощения при 1593, 1488 и 1443 сж - принадлежат молекулярно адсорбированному пиридину (см. главу II). При десорбции все молекулы пиридина удаляются с поверхности. Таким образом, в спектре пиридина, адсорбированного на образце РгОв ЗЮг, откачанном при высокой температуре, не наблюдается полос иона пиридиния, свидетельствующих о наличии на поверхности образца сильных кислотных центров типа Бренстеда. При адсорбции этим образцом воды в спектре адсорбированного пиридина наблюдается полоса 1591 см с плечом около 1575 см.- и полосы 1542, 1488 и 1440 см которые указывают на появление на поверхности ионов пиридиния (см. главу II), [c.206]

    В работе [61] показано,, что адсорбированный аммиак образует координационную связь с поверхностными атомами В, Т1 и 5п, появляющимися на поверхности кремнезема при его реакции с ВС1з, ТхСЦ, ЗпСЦ. Роль примесных атомов бора в адсорбции молекул пиридина на пористом стекле и кабосиле с нанесенной окисью бора исследована в работе [33]. Было установлено, что физически адсорбированные молекулы пиридина образуют водородную связь с поверхностными гидроксильными группами 81—ОН и В—ОН. Часть молекул пиридина [образует координационную связь с поверхностными атомами бора. После десорб- [c.207]

    Пэрри было показано, что пиридин адсорбируется на кремнеземе в результате образования водородных связей с поверхностными гидроксильными группами. Окись алюминия является сильной кислотой Льюиса, но обнаружить присутствие протоно-донорных центров не удается, в то время как алюмосиликатные катализаторы крекинга обнаруживали оба типа кислотных центров. [c.249]

    Перри [344], анализируя ИК-спектры адсорбированного пиридина (см. стр. 271), нашел, что в катализаторах крекинга Гудри имеются как бренстедовские, так и льюисовские центры. Эти результаты были подтверждены Базила и др. [363], применившими тот же метод. Приблизительно одинаковое количество тех и других кислотных центров наблюдалось в дегидратированных синтетических алюмосиликатах. Обработка ацетатом калия ослабляет кислотность большинства льюисовских центров и полностью уничтожает бренстедовские центры. Вода, необратимо адсорбировавшаяся при комнатной температуре, превращала координационно связанный пиридин в ионы пиридиния. Однако хемосорбированная вода удалялась откачкой при 150°. Аналогичный эффект наблюдали Лефтин и Холл [364] электронный спектр хемосорбированных ионов карбония исчезал при добавлении воды и вновь появлялся после непродолжительной откачки. Модель, сформулированная Базила и др. [363], предполагает, что все первичные кислотные центры являются льюисовскими, локализованными на ионе алюминия, а предполагаемые бренстедовские центры образуются при вторичном взаимодействии между молекулами, адсорбированными на льюисовских центрах, и соседними поверхностными гидроксильными группами, являющимися силанольньши. [c.275]


Смотреть страницы где упоминается термин Гидроксильные группы поверхностные с пиридином: [c.81]    [c.332]    [c.51]    [c.249]    [c.180]    [c.156]    [c.51]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.249 ]




ПОИСК





Смотрите так же термины и статьи:

Гидроксильная группа



© 2025 chem21.info Реклама на сайте