Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислотные центры в цеолитах льюисовские

Рис. 3-79. Зависимость концентрации кислотных бренстедовских и льюисовских центров в декатионированном цеолите У от температуры предварительной обработки [69]. Рис. 3-79. <a href="/info/6341">Зависимость концентрации</a> <a href="/info/349551">кислотных бренстедовских</a> и льюисовских центров в <a href="/info/1490837">декатионированном цеолите</a> У от <a href="/info/901773">температуры предварительной</a> обработки [69].

    С целью выяснения природы каталитической активности цеолита HY в реакции окисления бензилового спирта исследовано влияние на активность катализатора различных факторов степени обмена ионов Na на Н в исходном NaY, адсорбции пиридина и воды, предварительной термообработки водородом [259]. Показано, что каталитическая активность цеолита HY, под которой подразумевается суммарный выход бензальдегида и бензойной кислоты, уменьшается на 60% при обработке цеолита водородом при 500° С в течение 15 ч. Это явление аналогично дезактивирующему влиянию высокотемпературной водородной обработки цеолита в реакциях гидрирования, о чем говорилось выше. При обмене 40-60% ионов Na в цеолите происходит заметное увеличение выхода продуктов окисления, а также бензилового эфира и толуола. Пиридин вызывает снижение каталитической активности цеолита HY, а введение в реакционную систему воды увеличивает выход бензилового эфира и снижает выход продуктов окисления. Изучено влияние температуры прокаливания цеолита HY на его каталитические свойства. Оказалось, что предварительное прокаливание при 450°С приводит к повышенной активности катализатора в образовании бензилового эфира, а выход бензальдегида увеличивается с повьпцением температуры прокаливания в интервале 500-550°С. Эти результаты указывают, по-видимому, на то, что реакция дегидратации бензилового спирта осуществляется на бренстедовских кислотных центрах, а его окисление происходит с участием льюисовских центров. [c.107]

    На рис. 1 показаны ИК-спектры пиридина, адсорбированного на NaX и LaX, На NaX в области 1450 наблюдается характеристическая полоса пиридина, координационно связанного с кислотой Льюиса [4, 5]. Характеристическая полоса иона пиридиния в области 1540 см не обнаруживается. Это показывает, что в цеолите NaX большинство кислотных центров являются льюисовскими кислотами. Полоса 1445 см не изменяется при введении в систему воды. [c.131]

    Вместе с тем введение в цеолит катионов РЗЭ сильно повышает их активность и селективность в данной реакции [7], причем РЗЭ-формы цеолитов вполне удовлетворительно работают без всякого декатионирования [8]. Это позволяет думать, что единственно важным с точки зрения рассматриваемой роакции льюисовским кислотным центром на цеолитах является центр I или какая-нибудь его модификация, поскольку именно катионы РЗЭ характеризуются большим числом электронных вакансий. [c.350]

    Адсорбция на прокаленном при температуре выше 650 °С цеолите У, содержащем двухвалентный катион, приводит к появлению в ИК-спектре полосы поглощения (1451 см ) координационно связанного пиридина на льюисовских кислотных центрах. При адсорбции на прокаленной при 680 С редкоземельной форме цеолита У в ИК-снектре наблюдается аналогичная полоса поглощения пиридина, приписанная присутствию льюисовских центров в местах с дефицитом кислорода [81]. Возникновение этой полосы поглощения может быть также обусловлено взаимодействием пиридина с катионом, нанример, редкоземельного элемента. Адсорбируясь па образцах, прокаленных при температуре ниже 480 С, пиридин дает в ИК-спектре полосы поглощения иоиа пири-диния при 1545 см (бренстедовские центры) и координационно связанного пиридина при 1451 см (льюисовские центры) [82]. [c.483]


    В работе [48] адсорбция аммиака и пиридина использована для исследования кислотности цеолита МаХ, в котором 15% катионов натрия замещены на ионы никеля. Никелевый цеолит предварительно прогревали при 200 и 350° С. При напуске аммиака на образец, дегидратированный при 200° С, полосы поглощения гидроксильных групп при 3650 и 3610 см исчезают, а вместо них появляются полосы поглощения ионов аммония. Поэтому можно сделать вывод, что ОН-группы обоих типов являются протонными кислотными центрами. Адсорбция аммиака никелевым цеолитом, дегидратированным при 350° С, сопровождается образованием ионов аммония за счет протонирования молекул аммиака гидроксильными группами с частотами колебаний 3650 и 3560 см . Наблюдалось также взаимодействие аммИака с катионами никеля, к которому были отнесены две другие полосы поглощения. Если, правда, принять во внимание низкую степень обмена, то присутствие этих полос можно связать и с взаимодействием аммиака с катионами натрия.. Наличие протонных кислотных центров в образце, прогретом при 350° С, подтверждают опыты по адсорбции пиридина. Помимо полос поглощения иона пиридиния, в спектре наблюдаются полосы при 1455, 1451, 1448 и 1440 см . Первые две полосы, очевидно, можно приписать адсорбции пиридина на льюисовских кислотных центрах двух типов, а появление остальных двух полос может быть вызвано адсорбцией молекул пиридина на катионах никеля или натрия или образованием водородных связей между ОН-группами цеолита и молекулами пиридина. [c.287]

    В отличие от водорода окись углерода восстанавливает Си в цеолите Y до Си" ". Поскольку в процессе обработки цеолита окисью углерода вид спектров в области валентных колебаний гидроксильных групп не меняется, механизм восстановления меди должен быть иным, чем при взаимодействии с водородом. На восстановленных образцах u Y не удалось обнаружить бренстедовских кислотных центров, хотя в спектрах адсорбированного пиридина присутствовала полоса при 1451 см , - обусловленная адсорбцией молекул пиридина на льюисовских центрах или на катионах. Показано, что добавление воды способствует образованию льюисовских центров. Восстановление меди можно изобразить следующей реакцией  [c.326]

    Спрессованные таблетки цеолитов (удельная поверхность 5 5 мг/см ) помешают в вакуумную ячейку, расположенную на пути луча в ИК-спектрометре. На цеолите, находящемся в ячейке, можно адсорбировать различные молекулы основного характера и по ИК-спектрам этих молекул делать выводы о характере их взаимодействия с кислотными центрами цеолита. Обьино используют следующие основания аммиак [3], линейные и разветвленные алифатические амины (первичные, вторичные и третичные) [И, 18], пиридин [30, 31] и пиперидин [3, И]. При реакции с кислотными гидроксильными группами эти молекулы протонируются при взаимодействии молекул оснований с льюисовскими центрами или с катионами (с образованием координационных связей) получаются спектры другого типа [3, 11, 18]. [c.28]

    В работе [54] описан хроматографический метод, включающий высокотемпературные измерения кислотности и позволяющий различить бренстедовские и льюисовские кислотные центры цеолита. Метод основан на определении количества кислорода, используемого для окисления аммиака, остающегося на цеолите после его вакуумирования при повышенных температурах. Различия между кислотными центрами разного типа можно установить на основании неодинакового расхода кислорода при изменении температуры адсорбции и- откачивания, а также отличий в температуре, требуемой для окисления аммиака, адсорбированного на разных кислотных центрах. [c.31]

    Анжелл и Шеффер [135] исследовали методом ИК-спектроскопии цеолиты Y, содержащие двузарядные катионы, и установили, что у образцов, вакуумированных при медленном подъеме температуры до 500°С, полоса при 3650 см в спектрах более интенсивна, чем у тех же цеолитов, дегидратированных быстрым нагреванием. Отсюда следует, что дегидратация и гидролиз катионов протекают одновременно и способностью генерировать ОН-группы обладает только часть катионов. Таким образом, оказалось, что и в этом случае число каталитически,активных центров зависи от способа активации образцов. Найдено также, что напуск паров HjO при 260° С на активированный цеолит aY, содержащий адсорбированный пиридин, приводит к росту концентрации иона пиридиния [60]. Промотирующее влияние воды следует учитывать при проведении каталитических опытов на регенерированных катализаторах, т, е. на образцах, подвергнутых термопаровой обработке (см. также [149]). Анжелл и Шеффер [135] обнаружили небольшое изменение величины 7он У различных катионов в ряду NaY (некоторый дефицит катионов), BaY, aY, MgY и HY уон равна 3652, 3647, 3645, 3643 и 3636 см" соответственно. Авторы работы [137] попытались связать величину Уон Для данного катиона с его сродством к электрону. Представление о такой корреляции Ричардсон [85] использовал для обоснования предположения о том, что кислотность ОН-групп зависит от поляризующего действия катионов, подобно тому как в водородных формах кислотность гидроксильных групп увеличивается под влиянием соседних льюисовских центров. Кроме того, он предложил отнести полосу при 3650 см" к ОН-группам различной [c.42]


    Особо термостойкие цеолиты получают при извлечении алюминия из декатионированного цеолита V обработкой ЭДТА [151, 153]. Хотя нри этом фожазит в основном сохраняет свою морфологию, структура каркаса заметно изменяется. Удаленный алюминий отчасти замещается на кремний в результате рекристаллизации каркаса, но, кроме того, алюминий должен находиться в катионных местах вне каркаса. Концентрация слабокислотных льюисовских центров в цеолите с пониженным содержанием алюминия меньше, чем в цеолите V, но концентрация сильнокислотных льюисовских центров и бренстедовских кислотных центров выше [154]. [c.90]

    В работе [512] показано, что модификация льюисовских кислотных центров при появлении на поверхности кислотных центров бренстедовского типа (т. е. применение вместо f-AlaOg алюмосиликатов) резко ухудшает активность катализатора в реакции разложения Sj. В реакции же окисления HgS алюмосиликатный контакт обладает очень высокой активностью [513]. Например, при пропускании сероводо-родо-воздушной смеси, содержащей около 30 об.% HjS (примерно стехиометрическое соотношение HjS и Og для реакции образования серы) со скоростью 1320 мл мин через 1 г кристаллического алюмосиликата (цеолит 13 X) сероводород количественно окислялся в серу. Реакция начиналась при комнатной температуре, но уже через 5 мин в результате саморазогревания температура в реакторе достигала 245 С. В течение ПО ч (с перерывами) активность катализатора оставалась постоянной. Близкие результаты получены в [514] при температуре 324° С и объемной скорости 890 Ч-1. [c.270]

    Кислотные свойства цеолитов, содержащих обменные катионы. Цеолиты со щелочными катионами. Опубликовано большое число работ по исследованию кислотности различных катионообменных форм цеолитов, Больщинство работ посвящено изучению цеолитов X и Y, менее подробно исследованы цеолиты L, А и морденит. Исходя из теоретических соображений, можно было ожидать, что цеолиты со щелочными катионами не должны содержать кислотных центров. Однако выводы, к которым пришли авторы ряда работ, изучавших Na-формы цеолитов, неоднозначны. Подобные различия, видимо, связаны с неодинаковой чистотой и неидентичными условиями предварительной обработки цеолитов. На натриевых формах цеолитов X и Y высокой степени чистоты кислотных центров обнаружить не удалось, В тех цеолитах, в которых имеется определенный дефицит катионов, вызванный гидролизом, или в значительной степени загрязненных примесями таких многозарядных катионов, как кальций, было найдено небольшое число бренстедовских или льюисовских центров, причем их соотношение зависит от температуры предварительной термообработки. Таким образом, если исходный цеолит отличается большой чистотой, то соответствующие катионообменные формьг, содержащие катионы натрия и другие щелочные катионы, кислотными свойствами не обладают [33—36]. [c.274]

    Наличие кислотных центров декатионированных цеолитов нельзя объяснить только присутствием гидроксильных групп. Исследование адсорбции пиридина на- цеолите, прогретом для полного дегидроксилирования при 800° С, показало, что после нагревания образца с адсорбированным пиридином при 200° С в спектрах наблюдается формирование ионов пиридиния, что указывает на присутствие в цеолите центров Бренстеда [69]. Пока не ясно, образуются ли эти центры при перестройке каркаса цеолита и миграции следов воды в цеолите под действием прокаливания, или же они формируются в результате разложения адсорбированного пиридина. Показано также, что бренстедовские и льюисовские кислотные центры одновре менно присутствуют в образце, полученном при дезаммонировании КН4-формы цеолита Ь при 450° С [46]. Адсорбция воды цеолитами X и Ь способствует превращению льюисовских кислотных центров в бренстедовские. [c.303]

    Ультрастабильный цеолит . Адсорбция пиридина была использована для исследования кислотных свойств ультрастабильных цеолитов. На рис. 3-80 показаны спектры такого цеолита в области валентных колебаний гидроксильных групп до и после адсорбции пиридина [181]. Цеолит был приготовлен по способу Мак-Даниэля и Мейера [84] (см. гЛ. 4). ПереД измерениями адсорбции пиридина этот образец вакуумировали при 460° С. Наиболее существенным изменением в спектре является йсЧезновение полос поглощения при 3650 и 3680 см , которое указывает на то, что соответствующие гидроксильные группы являются кислотными центрами. В спектрах наряду с бренстедовскими центрами проявляются льюисовские кислотные центры. Число бренстедовских кислотных центров в стабилизованном цеолите У примерно в два раза ниже, чем в декатионированном образце [c.303]

    В работе [107] рассматривается адсорбция различных аминов на цеолитах X и У. В цеолите X 40% катионов натрия были замещены на NH4-noHbi, поэтому в спектре этого цеолита наблюдалась одна полоса колебаний ОН-групп при 3650 см . У цеолита У степень обмена составляла 70%, и в спектре проявлялись полосы поглощения гидроксильных групп обоих типов. В качестве адсорбатов были использованы этил-, диэтил-, триэтил-, бутил- и изопропиламин, пиперидин и пиридин. Адсорбция всех этих аминов сопровождалась протонированием адсорбированных молекул кислотными гидроксильными группами, образованием координационной связи между аминогруппой и катионами натрия, а также взаимодействием с льюисовскими кислотными центрами. При комнатной температуре амины не проявляют заметной селективности по отношению к гидроксильным группам определенного типа. Однако при более высоких температурах, например при 150° С, адсорбированные молекулы взаимодействуют в первую очередь с гидроксильными группами с частотой колебаний 3650 см . При удалении аминов, в частности пиридина, из цеолита путем вакуумирования интенсивность полосы поглощения амина, адсорбированного на катионах, уменьшается, а полоса при 1455 см , приписанная взаимодействию амина с атомами алюминия, возрастает. Такое увеличение интенсивности может быть связано с тем, чтя вначале удаление амина вызывает дегидроксилирование, а затем удаленные молекулы амина вновь адсорбируются на цеолите, но уже на дегидроксилированных центрах. Не исключено также, что увеличение интенсивности полосы [c.314]

    По кислотным свойствам тетраметиламмониевый оффретит [110] оказался близким к цеолитам Y с алкиламмониевыми катионами. После разложения органических катионов при 425° С в спектре наблюдались полосы поглощения гидроксильных групп при 3690, 3615 и 3550 см . Эти гидроксильные группы взаимодействовали с аммиаком с образованием аммониевых ионов, и поэтому их можно считать протонными кислотными центрами. Обработка цеолита при 600° С приводит к почти полному дегидроксилированию, и в цеолите остаются только льюисовские кислотные центры. [c.315]

    Согласно спектральным данным, льюисовские центры представляют собой трехкоординированные атомы алюминия однако доказательств существования катионов кремния в окружении трех атомов кислорода пока явно недостаточно, поэтому структура дегидроксилированных участков цеолита еще точно не установлена. Следовательно, дегидроксилированным цеолитом У мы будем называть цеолит, образующийся при удалении структурных гидроксильных групп, а льюисовскими кислотными центрами назовем возникающие при этом центры, способные к координационному взаимодействию с азотистыми основаниями. Пиридин адсорбируется на центрах обоих Т1Ш0В, но, по данным работы [47], основание более крупного размера, 2,6-диметилпиридин, селективно взаимодействует с центрами бренстедовской кислотности. [c.23]

    Адсорбция трифенилметана при 100°С на активированном цеолите НН4 (степень замещения 45%) [184] привела к образованию стабильного трифенилметил-катиона, идентифицированного методом оптической спектроскопии, на свойства которого не влияет присутствие Ог (см. также [197]). Поскольку эту реакцию можно считать модельной реакцией образования карбониевых ионов из парафинов в более жестких услоаиях, авторы предложи.ти механизм, который включает атаку на связь С — Н со стороны протонного или льюисовского кислотного центра. Зависимость концентрации катионов от Гакт выражалась кривой с резким максимумом при 550°С. Такую [c.54]

    Снижение каталитической активности цеолитов при постепенном добавлении таких оснований, как хинолин, изучалось во многих работах. Хотя этот метод и нельзя использовать для раздельного определения активности бренстедовских и льюисовских кислотных центров, потому что взаимодействовать с хинолином способны центры обоих типов, тем не менее с помощью отравления хинолином можно выяснить, активны ли все кислотные центры или только наиболее сильные из них. Туркевич [82, 86, 210] изучал влияние добавок хинолина на активность цеолитов в крекинге кумола при 325°С в импульсном микрореакторе. На катализатор попеременно подавались импульсы кумола и хинолина, причем доза последнего могла вызвать отравление всего лишь небольшой доли теоретически возможного общего числа кислотных центров. В серии цеолитов NH4Y с различной степенью обмена, активированных при 450°С, активность уменьшалась пропорционально общему количеству добавленного хинолина. При степени обмена меньше 50% число активных центров, рассчитанное по эквивалентному количеству молекул хинолина, было равно числу удаленных катионов Na" при более высоких степенях декатионирования рост числа центров замедлялся, возможно, из-за недоступности активнь1х центров, образующихся при глубоком декатионировании (О3 —Н ). Если Такт превышала 450°С, количество хинолина, вызывающее полное отравление цеолита, снижалось. Поэтому Туркевич связывает активность с наличием бренстедовских (а не льюисовских [82, 210]) центров, предполагая, что для отравления одного бренстедовского центра необходима одна молекула хинолина [86]. Льюисовские центры, по его мнению, с хинолином при 325°С не реагируют. Последнее утверждение не подкреплено экспериментальными данными и противоречит результатам ИК-спектроскопических наблюдений пиридина, адсорбированного на декатионированном цеолите Y. Согласно этим наблюдениям, пиридин более прочно связан с льюисовскими, чем с бренстедовскими центрами (ср, [47]). [c.64]

    Очень интересный экспериментальный подход к исследованию влияния содержания олефинов на протекание крекинга описан в работе Вейсца [6]. В качестве катализатора был использован очень активный цеолит — Н-морденит, способный уже при 230° С превращать н-бутан в изобутан и продукты крекинга. На входе в реактор крекинга, температуру которого поддерживали при 230° С, н-бутан, разбавленный водородом, пропускали через другой реактор с некислотным гидрирующим алюмоплатиновым катализатором. В этом реакторе путем изменения температуры устанавливали такое соотношение компонентов реакционной смеси, которое соответствовало равновесному составу смеси бутана, бутенов и водорода при данной температуре. Это давало возможность, изменяя температуру первого реактора от 250 до 550° С регулировать концентрацию н-бутена в н-бутане от 0,001% до 10%. Хотя эти и другие эксперименты не исключают того, что при более высоких температурах морденит или какой-либо иной цеолит может непосредственно активировать парафины и без промежуточного образования олефинов, они тем не менее наглядно показывают способность олефинов даже в следовых концентрациях инициировать реакции крекинга. Некоторые данные о том, что крекинг парафинов в оишчие от других превращений углеводородов с максимальной полнотой протекает при наличии в катализаторе определенного количества льюисовских или определенного количества очень сильных бренстедовских центров, действительно говорят о возможности прямого активирования парафинов. На это же указывает образование карбониевых ионов при взаимодействии парафинов с суперкислотами, рассмотренное в начале данной главы. Еще одним примером модельной реакции, объясняющим возможность разрыва С—Н-связи парафинов под действие кислотных центров цеолита является реакция (60), описанная Кер- [c.98]

    Свойства изолированных атомов металлов изучены мало [11, 48—50]. При атомарной дисперсности платина обладает большей устойчивостью к отравлению серой [11]. Атомы палладия, полученные восстановлением цеолита Рё-НМа водородом при 25° С, не хемосорбируют ни водород, ни кислород [49, 50], и в этом отношении они резко отличаются от массивного металла и частиц Рс1 на различных носителях. Другой важный результат — сильное воздействие твердого тела на электронное состояние палладия. Атомы Рс1° ло-ка лизованы в цеолите вблизи льюисовских кислотных центров, которые оттягивают к себе их 4i/-элeктpoны [5] в результате этого некоторая часть атомов Рс1° превращается в ионы Рё , обнаруженные методом ЭПР [49]. Электронодефицитное состояние маленьких кластеров платины в цеолитах, содержащих двух- и трехзарядные катионы, отметили Далла Бетта и Будар [48]. По их мнению, под воздействием электрофильных носителей электронная конфигурация платины становится похожей на конфигурацию иридия, и соответствующие катализаторы проявляют повышенную активность в гидрировании этилена (табл. 10-3).  [c.173]

    При повышении температуры до 325 °С количество бренстедов-ских кислотных центров растет, затем становится постоянным, а в области температур 500—800 °С уменьшается. Количество же льюисовских кислотных центров быстро увеличивается после 550 °С. На основании этих экспериментальных данных можно сделать вывод о том, что цеолит при нагревании претерпевает изменения  [c.60]

    Природа льюисовских кнслотвых цжгров. Льюисовский кислотный центр возникает в цеолите прй удалении двух гидроксильных групп. В работах [56, 57] предполагают, что трехкоординированные атомы А1 и атомы 81 с избыточным положительным зарядом образуются по схеме [c.39]

    Число. льюисовских кислотных центров. Как следует из интенсивности полосы 1450 см в ИК-спектре пиридина, адсорбированного на цеолите [56, 57], концентрация льюисовских кислотных центров может повышаться при увеличении температуры вакуумирования цеолита. На рис. 10 представлена относительная интенсивность этой полосы для Н-форм различных цеолитов. Для зеолона Н интенсивность падает при повышении температуры вакуумирования, что можно объяснить в соответствии со схемой (11). По схеме (13а), льюисовские центры представляют собой частицы АЮ или другие группировки, связанные с ними. [c.46]

    На ускорение рециклизации тетрагидрофурана в тиолан под действием льюисовских кислотных центров указывают результаты опытов на цеолите NaX, имеющем слабые льюисовские кислотные и основные центры. В исходном цеолите NaX отсутствуют протонные центры, но после хемосорбции HjS при Т= 300 °С на поверхности появляются протонные центры с РА° < < 1300 кДж/моль в количестве 0.03 мкмоль/м . Повышенная селективность реакции на цеолите NaX (S= 92-94 %) по сравнению с протонодонорными катализаторами свидетельствует, однако, о небольшом вкладе протонных центров в данный процесс. На поверхности у- и Г1-А12О3 нет сильных протонных центров (с РА < 1300 кДж/моль), но они имеются в оксиде алюминия, модифицированном кислотными добавками. Алюмооксидные катализаторы обладают значительным числом сильных льюисовских кислотных центров, содержатся в этих образцах и основные центры умеренной силы. На алюмооксидных катализаторах скорость общего превращения тетрагидрофурана в тиолан в расчете на один льюисовский кислотный центр на один-два порядка больше скорости, отнесенной к одному протонному центру протонодонорного катализатора (см. табл. 3.4). [c.117]

    Нищизава и др. [183] высказали мнение, о наличии в цеолите NaX кислотных льюисовских центров. Однако сравнительно низкие частоты колебаний и легкость удаления адсорбированного пиридина, а также отсутствие полос поглощения иона пиридиния после предварительной адсорбции воды делают более убедительным вывод о том, что с пиридином взаимодействуют не центры Льюиса, а катионы, Такие же результаты опубликовали Игнатьева и сотр. [184]. По данным Эберли [34],в спектре пиридина, адсорбированного цеолитомКаУ, обнаружены полосы молекул, связанных с центрами Льюиса, и не найдены ПОЛОСЫ протонированного пиридина. Но, вероятно, и в этом случае адсорбционными следует считать катионы, а не льюисовские центры, так [c.276]

    Аналогичные работы выполнены на цеолитах X. Хаттори и Шиба [29] использовали адсорбцию пиридина для исследования кислотности магниевых, кальциевых и стронциевых цеолитов, прогретых при 450° С. На дегидратированных образцах СаХ и 5гХ обнаружены только льюисовские центры, однако после адсорбции воды найдены и бренстедовские центры. Показано, что в цеолите MgX бренстедовская кис ютность мала и при добавлении воды число бренстедовских центров не увеличивается. Уорд [144] провел исследование четырех цеолитов со щелочноземельными катионами, предварительно прогретыми при 480° С, и в частности, измерил кислотность как дегидратированных, так и частично гидратированных образцов. Основные результаты совпадают с уже рассмотренными данными, полученными при изучении цеолитов V [35]. При адсорбции пиридйна в спектрах наблюдается полоса в области 1440—1450 см , связанная с взаимодействием адсорбированных молекул с катионами частота колебаний [c.284]

    Предположения о возрастании активности одного центра с увеличением общей концентрации активных центров в активированном цеолите NH4Y еще раньше выдвигались Туркевичем с сотр, [82], изучавшими крекинг кумола при 325° С, Число активных центров было определено путем последовательного отравления хинолином (см. ниже) серии катализаторов NH4Y с различной степенью обмена, предварительно прогретых при 500° С в вакууме. Зависимость относительной активности одного центра от числа этих центров представляла собой кривую с резким подъемом. Авторы связали активность с льюисовской, а не с бренстедовской кислотностью, хотя ни те, ни другие центры не способны вступать в координационное взаимодействие с хинолином. [c.29]

    Образование эфира на декатионированном цеолите вряд ли связано с ионами натрия, так как при такой степени декатионирования остаточные ионы натрия занимают, очевидно, недоступные молекулам спирта места 51. Можно предположить, что в этом случае образование эфира происходит на иных акцепторных центрах. Для декатионированных форм характерно наличие и сильной льюисовской кислотности, обусловленной образованием трехкоординированных атомов алюминия. Активность таких центров в дегидратации метанола с образованием эфира подтверждается высокой активностью окиси алюминия [12]. [c.341]


Смотреть страницы где упоминается термин Кислотные центры в цеолитах льюисовские: [c.85]    [c.97]    [c.221]    [c.233]    [c.302]    [c.20]    [c.47]    [c.64]    [c.67]    [c.90]    [c.99]   
Химия цеолитов и катализ на цеолитах Том2 (1980) -- [ c.2 , c.2 , c.2 , c.2 , c.2 , c.2 , c.2 , c.21 , c.43 , c.63 , c.92 , c.99 , c.107 , c.116 , c.154 , c.174 , c.219 , c.249 , c.265 , c.272 , c.276 , c.321 , c.336 , c.400 ]




ПОИСК





Смотрите так же термины и статьи:

Центр льюисовские



© 2025 chem21.info Реклама на сайте