Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радон свойства

    В восьмом ряду дополнительное осложнение связано с тем, что после лантана La идут 14 элементов, чрезвычайно сходные с ним по свойствам, названные лантаноидами. В приведенной таблице они размещены в виде отдельного ряда. Таким образом, восьмой и девятый ряды образуют большой период, содержаш,ий 32 элемента (от цезия s до радона Rn). Наконец, десятый ряд элементов составляет незавершенный 7-й период. Он содержит лишь 21 элемент, из которых 14, очень сходные по свойствам с актинием Ас, выделены в самостоятельный ряд актиноидов. Как мы теперь знаем, такая структура таблицы является отражением фундаментальных свойств химических элементов, связанных с особенностями строения их атомов. [c.22]


    В табл. 20.1 приведены некоторые свойства благородных газов. Видно, что температура сжижения и затвердевания благородных газов тем ниже, чем меньше их атомные массы или порядковые номера самая низкая температура сжижения у гелия, самая высокая — у радона. [c.492]

    Между металлическими и окислительными элементами нет резкой границы. Утрата металлического характера неизбежно сопряжена с появлением окислительных свойств. Однако среди элементов встречаются-такие, у которых металлические свойства крайне ослаблены, а окислительные свойства выявлены еще недостаточно. Для таких элементов промежуточного характера было бы целесообразно использовать название металлоиды. К этому классу элементов могут быть отнесены по два элемента из каждого периода, а именно бор, углерод, кремний, фосфор, германий, мышьяк, сурьма, теллур, висмут, полоний. У всех этих элементов мы встречаемся с проявлением если не металлических, то во всяком случае ясно выраженных восстановительных свойств. Следует отметить, что даже у настоящих окислительных элементов (сера, селен, бром, иод, астат) также проявляются восстановительные свойства. В этом отношении от них резко не отличаются следующие за ними инертные элементы — криптон, ксенон, радон. Однако инертные элементы характеризуются полным отсутствием окислительных свойств. [c.35]

    Радий сильно радиоактивен, период полураспада его 1620 лет подвергаясь а-распаду, он превращается в радон. Некоторые свойства металлов подгруппы 11Л указаны в табл. 3.2. [c.329]

    Радон сильно радиоактивен, и его химические свойства изучены недостаточно, [c.225]

    В последнее время обнаружены восстановительные свойства у инертных газов криптона, ксенона и радона. [c.197]

    Как следует из приведенных данных, свойства простых веществ элементов УША-группы закономерно изменяются по мере увеличения атомной массы. От гелия к радону возрастают температуры и [c.390]

    Вскоре было обнаружено, что излучательной способностью обладает и торий, а в 1898 г. супругами Марией и Пьером Кюри были открыты два новых химических элемента — радий и полоний. Излучательная активность радия вместе с элементами, образующимися из него, оказалась в миллион раз больше активности урана. Мария Кюри предложила термин радиоактивность лля обозначения способности элементов к самопроизвольному излучению. В последующие годы были открыты еще некоторые радиоактивные элементы— актиний, эманации радия, тория и актиния (названные радоном, тороном, актиноном) и многие другие. При этом каждое из выделенных радиоактивных простых тел рассматривалось как самостоятельный химический элемент. Количество подобных элементов превосходило число клеток в Периодической системе, и некоторые из них обладали тождественными химическими свойствами с уже известными. Введение понятия изотопа уменьшило их число. Оказа- [c.393]


    В атомах элементов шестого периода цезия (Z=55) и бария (2=56) заполняется б5-подуровень. У лантана (2=57) один электрон поступает на 5й-подуровень, после чего заполнение этого подуровня приостанавливается, а начинает заполняться 4/-подуровень, семь орбиталей которого могут быть заняты 14 электронами. Это происходит у атомов элементов лантаноидов с 2=58—71. Поскольку у этих элементов заполняется глубинный 4/-подуровень третьего снаружи уровня, они обладают весьма близкими химическими свойствами. С гафния (2=72) возобновляется заполнение -подуровня и заканчивается у ртути (2=80), после чего электроны заполняют 6/7-подуровень. Заполнение уровня завершается у инертного газа радона (2=86). В шестом периоде 32 элемента. [c.52]

    Физические свойства инертных элементов. Благородные газы бесцветны и лишены запаха. В 100 объемах воды при 0°С и давлении 100 кПа растворяются 1 объем гелия, 6 объемов аргона или 50 объемов радона. [c.403]

    Благодаря различию химических свойств членов одного и того же радиоактивного ряда они могут быть отделены друг от друга, Например, на опущенной в раствор смеси КаО и КаЕ пластинке металлической меди осаждается только КаЕ, тогда как КаО остается в растворе. Подобным же образом проходящая над препаратом радия струя воздуха уносит с собой газообразный радон, отделяя его тем самым от радия. [c.495]

    Общая характеристика элементов. К благородным газам относятся гелий, неон, аргон, криптон, ксенон и радон. По своим свойствам они ие похожи ни на какие другие элементы и в периодической системе расположены между типичными металлами и неметаллами. [c.501]

    Радон — радиоактивный элемент. Он содержится в природе в незначительных количествах, и его свойства изучены еще мало. [c.106]

    Свойства. Благородные газы существуют в виде одноатомных простых веществ. При нормальных условиях это газы без цвета и запаха. Они имеют низкие температуры кипения и плавления, повышающиеся при переходе от гелия к радону. Так, температура кипения гелия —268,9 °С, неона —246,0°С, а радона —61,9°С. [c.106]

    Если наблюдаемые химические и физические свойства элементов и их соединений сопоставить с атомными номерами элементов, то четко выявится, что после первых двух элементов — водорода и гелия, составляющих первый очень короткий период (слово период используется для обозначения определенного числа последовательно расположенных элементов), идет второй короткий период из восьми элементов (от гелия с атомным номером 2 до неона с атомным номером 10), третий короткий период из восьми элементов (до аргона с атомным номером 18), затем идет первый длинный период из восемнадцати элементов (до криптона с атомным номером 36), второй длинный период из восемнадцати элементов (до ксенона с атомным номером 54) и, наконец, очень длинный период из тридцати двух элементов (до радона с атомным номером 86). Если в будущем будет получено достаточное число новых элементов с очень большими атомными номерами, то, весьма вероятно, выявится существование еще одного очень длинного периода из тридцати двух элементов, который также будет заканчиваться инертным газом, элементом с атомным номером 118. [c.100]

    Естественные радиоактивные элементы в периодической системе, Первые.из открытых радиоактивных элементов располагались в самом конце периодической системы элементов. Основные законы и закономерности радиоактивного распада были установлены как раз на примере элементов с порядковыми номерами от 84 (полоний) до 92 (уран). Были обнаружены следующие специфические свойства радиоактивных элементов а) способность вызывать почернение фотопластинки (фотохимический эффект) б) выделение газов при радиоактивном распаде (образование гелия и различных изотопов радона) в) выделение тепла при радиоактивном распаде г) возбуждение флуоресценции. [c.59]

    Естественные радиоактивные изотопы, т. е. изотопы, образующиеся в природе помимо деятельности человека, были обнаружены у очень многих элементов начала и середины периодической системы. В табл. 10 приводятся естественные радиоактивные изотопы элементов с порядковыми номерами от 1 до 83 (т. е. до тех естественных элементов, радиоактивные свойства которых были давно открыты и изучены), радиоактивность которых в настоящее время бесспорно установлена. Из табл. 10 видно, что, помимо девяти тяжелых радиоактивных элементов, известных еще с первых десятилетий исследования радиоактивности (полоний, астат, радон, франций, радий, актиний, торий, протактиний и уран ), естественные радиоактивные изотопы существуют, по крайней мере, еще у 46 химических элементов. Таким образом, большая часть элементов периодической системы обладает естественной радиоактивностью. [c.60]


    Ra ( 4= 1617 лет) — член радиоактивного ряда встречается во всех урановых рудах. Р. содержится также во многих природных водах. Изотоп — а-излучатель Ra-> Rn (образуется инертный газ радон). Р.—серебристобелый металл, по химическим свойствам сходен с барием в соединениях проявляет степень окисления +2. Соли Р. менее растворимы, чем соответствующие соли бария. Р. применяют как источник а-частиц для приготовления радий-бериллиевых источников нейтронов (бериллий испускает нейтроны при бомбардировке а-частицами), как v-источник при просвечивании металлических изделий в производстве светящихся красок, в медицине (радиотерапия, при лечении кожных заболеваний, рака). [c.110]

    Во-вторых, изучение радиоактивных цепочек привело к открытию явления изотопии. Было замечено, что многие радиоактивные элементы, составляющие определенные звенья в цепочке распада, обладают одинаковыми химическими свойствами и их невозможно разделить никакими химическими операциями. Например, при распаде полония и таллия (см. рис. 10) образуются элементы, подобные по своим свойствам свинцу. При распаде радона и висмута образуются два полония. Видно, что эти элементы различаются только атомными весами. Так, свинец имеет три вида атомов с атомными весами 214, 210 и 206 висмут — два вида с атомными весами 214 и 210. Содди в 1911 г. такие разновидности атомов одного химического элемента назвал изотопами, что означает занимающие одно место в периодической системе элементов Д. И. Менделеева. [c.33]

    Эти приборы называют эманометрами. Ими определяют, например, содержание радона в почвенном воздухе, и ио этой характеристике судят о илотности и газопроницаемости горных пород. Засасывая воздух из буровых скважин с разных горизонтов, но содержанию радона определяют свойства горных пород на больших глубинах. По эма-национным аномалиям геофизики судят о содержании радиоактивных руд в различных участках земной корм. [c.307]

    Сопоставление наблюдаемых химических и физических свойств элементов с их атомными номерами ясно показывает, что за первыми двумя элементами, водородом и гелием, идет первый малый период из восьми элементов (от гелия с атомным номером 2 до неона с атомным номером 10), второй малый период из восьми элементов (до аргона с атомным номером 18), первый большой период из восемнадцати элементов (до криптона с атомным номером 36), второй большой период из восемнадцати элементов (до ксенона с атомным номером 54) и затем очень большой период из 32 элементов (до радона с атомным номером 86). Если в будущем будет получено достаточное количество новых элементов с большими атомными номерами, то легко будет установить, что имеется еще один очень большой период из 32 элементов, который также закапчивается инертным газом с атомным номером 118. [c.89]

    Свойства. Все инертные газы не имеют цвета и запаха. Онй относительно трудно сжижаются, но тем легче, чем больше атомный вес. В ряду от гелия до радона температура кипения нри атмосферном давлении повы-. шается от —269 до —65°. Температура замерзания радона (при которой давление его паров еще равно 500 мм рт ст) равна —71°. Поэтому радон конденсируется при весьма малых концентрациях. Если пропускать радон через U-образную трубку, охлаждаемую жидким воздухом, то он осаждается на стенках трубки, что отчетливо видно по ярко-зеленой флуоресценции стекла, вызываемой радоном. Если радон находится под очень незначительным давлением, то его конденсация происходит в интервале температур от —152 до —154°. Вообще температуры -замерзания, а соответственно и температуры плавления инертных газов лежат немного ниже температур кипения (см. таблицу в начале главы). Гелий можно перевести в твердое состояние только под давлением. [c.131]

    Несмотря на свою химическую инертность радон — один из наиболее токсичных ядов, что обусловлено его радиоактивными свойствами. [c.548]

    Первым этапом, начавшимся в 1898 г., явились исследования П. Кюри и М. Кюри, вызвавшие большое число работ, посвященных главным образом открытию, изучению свойств, установлению местоположения в периодической системе и генетических связей естественных радиоактивных элементов и изотопов. В этот период было открыто около 40 естественных радиоактивных изотопов и 5 новых радиоактивных элементов (полоний, радон, радий, актиний, протактиний). Большое значение имело установление широко известного правила сдвига Содди — Фаянса. Все обнаруженные и изученные в этот период радиоактивные вещества оказались изотопами таллия, свинца, висмута, полония, радия, актиния, тория, протактиния и урана. [c.13]

    Какое бы свойство инертных газов мы нп рассматривали — все они проявляют одну и ту же закономерность с увеличением порядкового номера элемента — от гелпя до радона — свойство меняется монотонно, в одном и том же нанравлешш. (Исключения из этого правила невелики [c.37]

    Свойства. Металлы серебристо-белого цвета, причем блестящими остаются на воздухе только Ве и М , а Са, 5г и Ва быстро покрываются пленкой из оксидов и нитридов, которая не обладает защитными свойствами (в отличие от оксидной пленки на пове 1х-ности Ве и Mg) при хранении на воздухе Са, 8г и Ва разрушаются. Температуры плавления и твердость металлов подгруппы ИА значительно выше, чем щелочных. Барий по твердости близок к свинцу, но в отличие от последнего при разрезании легко крошится, разделяясь на отдельные кристаллы бериллий имеет твердость стали, но хрупок. Радий сильно радиоактивен, период полураспада его 1620 лет подвергаясь а-распаду, он превращается в радон. Некоторые свойства металлов подгруппы ПА указаны в табл. 3.2. Кальций, стронций, барий и радий называют щелочноземельнымн металлами (во времена алхимии и позднее многие оксиды металлов считали разновидностями земли, землями ). [c.311]

    Среди способов решения этих задач предусмотрены, в частности а) спектрометрическое изучение разрезов скважин для определения интервалов радиоактивного загрязнения массивов горных пород б) термометрические исследования скважин для выявления остаточных эффектов температурного воздействия ПЯВ в) гидропрослушивание и гидродинамическое обследование скважин для выявления заколонных перетоков и других особенностей флюидодинамики недр г) совместная регистрация вариаций пластовых давлений, соотношения активностей радона и торона, а также микросейсм по записям отдаленных и установленных на промысле сеймостанций д) определение положения и свойств геохимических барьеров, концентрирующих радионуклиды в теле месторождени е) проведение гамма-спектрометрической съемки и развертывание стационарной сети дозиметрических наблюдений. [c.91]

    Присутствие гелия установлено во всех минералах, обладающих радио aliTHBHbiMn свойствами. Это объясняется тем, что а-лучи, испускаемые радиоактивными элементами, являются ионизированным гелием. Некоторые радиоактивные минералы, как, например, торианит с острова Цейлона, может содержать от 8 до 10,5 мл гелия на 1 г. Небольшое количество аргона также было открыто в некоторых радиоактивных минералах. Радон содержится в ряде радиоактивных минеральных вод. [c.635]

    В 1962 г. доказано, что криптон, ксенон и радон могут проявлять восстановительные свойства, окисляясь при определенных условиях фтором и шестифтористой платиной. Синтезированы различные соединения фториды, оксиды, оксфто-риды, кислоты и соли. [c.140]

    Как уже отмечалось ранее (П1 2), почти одновременно с радием был открыт и другой радиоактивный элемент — полоний, характеризующийся длиной пробега испускаемых им а-частиц, равной 3,84 см, а с химической стороны являющийся аналогом теллура. Ближайшее изучение наведенной радиоактивности показало, что Ро содержится среди продуктов распада радона. С другой стороны, было известно, что радий всегда содержится в урановых рудах, причем последние обязательно содержат и один нерадиоактиБный элемент — свинец. Таким образом, естественно возникала мысль, что перечисленные элементы — и, Ка, Кп, Ро, РЬ, несмотря на различие их атомных масс и химических свойств, как-то родственно связаны друг с другом. Дальнейшая разработка вопроса подтвердила эго предположение оказалось, что все они действительно являются членами одного радиоактивного ряда, начинающегося с урана и кончающегося свинцом. Подобные же ряды известны для актиния и тория. Все три ряда показаны в приведенной на с. 492, 493 таблице. [c.494]

    Концентрация радона и его продуктов распада в помещениях определяется скоростью его эксхаляции из строительных конструкций зданий и из грунта, которая зависит от коэффициента эманирования радона из строительного материала. Коэффициент эманирования определяется как отношение равновесной актшности Rn, выделившегося из 1 кг строительного материала, к удельной активности радона в твердом образце этого материала. В [7] для оценки свойств строительных материалов выделять радон и создавать объемную актив- [c.144]

    Следующая стадия — обогащение урановой руды в цепочке работы с ураном — является менее радиаци-01шоопасной. В зависимости от типа руды, применяются четыре вида обогащения а) механическое, основанное на различии механических свойств урановых минералов и пустой породы б) гравитационное, основанное на большей плотности урановых минералов в) радиометрическое г) флотационное. Так как полностью отделить руду от пустой породы практически невозможно, то после этой стадии остаются первые так называемые хвосты — пустая порода, содержащая небольшое количество урана и, следовательно, продукты его распада. Обогащенная руда подвергается тонкому измельчению, и эта стадия, как и добыча урана, представляет серьезную радиологическую опасность, так как сопровождается значительной эмиссией радона в атмосферу. Стадия выщелачивания урана из руды сопровождается незначительной эмиссией радиоактивных веществ в окружающую среду. Обычно процедура растворения руды проводится растворами серной кислоты в присутствии природного диоксида марганца для перевода четырехвалентного урана в шестивалентный. При этом получаются растворы сульфата уранила. Если же в урановой руде имеется большое количество карбонатов, то расход серной кислоты будет слишком большим, и тогда применяется содовое (карбонатное) выщелачивание. [c.162]

    Наряду с а-, - и у-лучами были обнаружены и другие продукты, образующиеся при радиоактивных процессах. Так, радий (Йа, атомный вес 226, порядковый номер 88), кроме сг-и у-лучей, непрерывно выделяет еще и газ, который представляет собой другой элемент, называемый теперь радоном (Кп). Этот элемент обладает атомным весом 222, имеет порядковый номер 86 и по свойствам своим помещается в нулевую группу пёриодической системы. Радон в свою очередь выделяет ас- и у-лучи и значительно быстрее, чем сам радий, претерпевает дальнейшее пре- [c.404]

    Изучение и использование радиоактивных свойств радия в большой мере способствовало исследованию строения атома и вещества. Радий служит источником альфа-частиц, которыми бомбардируют бериллиевую мишень для получения потоков нейтронов. Радий применяют для приготовления светящихся составов. Установлено, что в малых количествах радий оказывает влияние на развитие, плодоношение и урожайность многих растений, усиливает ферментативное образование сахарозы в листьях. Радий используют как источник гамма-излучения в рентгеноскопии при просвечивании металлических изделий, а также в медицине — при лечении рака, кожных болезней и др. Он служит источником для получения газа радона, который Не только широко применяется в медицине (например, для радоновых ванн), но используется также и при исследованин поверхности металлических предметов, и при поисках в природе радиоактивных элементов. [c.204]

    После того как были открыты гелий и аргон, вывод о существовании неона, криптона, ксенона и радона ясно следовал из периодического закона попеки этих элементов в воздухе привели к открытию первых трех из них радон был открыт позже при проведении работ по изучению свойств радия и других радиоактивных веществ. В результате изучения соотношения между атомной структуро и периодическим законом Нильс Бор высказал предположение, что элемент 72 по своим свойствам должен быть похож на цирконий. Дж. Хевеши и Д. Костер, следуя этому указанию, провели тщательное изучение циркониевых руд и открыли недостающий элемент, который они назвали гафние.м. [c.92]

    В воде растворяются относительно большие количества инертных газов. Согласно Ланнунгу (Lannung, 1930), в 1 л воды при 20° растворяется 8,8 лм гелия, 10,4 мл неона, 33,6 мл аргона (объемы газов указаны при 0°). Как следует из этих данных, растворимость аргона в воде даже несколько превышает растворимость кислорода. При повышении температуры растворимость уменьшается с увеличением атомного веса инертного газа растворимость возрастает и достигает у радона примерно 51 об.% при 0°. На стр. 127 уже упоминалось о том, что при высоких давлениях инертные газы образуют кристаллические гидраты. Растворимость инертных газов в органических растворителях в некоторых случаях превышает их растворимость в воде. При низких температурах активированный уголь более или менее энергично поглош,ает все инертные газы, за исключением гелия (ср. стр. 131). В отличие от водорода гелий не диффундирует через раскаленную платину. Однако при повышенных температурах он (как и водород) диффундирует через кварцевое стекло. Это свойство можно использовать для разделения гелия и неона (Рапе1Ь, 1925). [c.132]


Смотреть страницы где упоминается термин Радон свойства: [c.668]    [c.399]    [c.108]    [c.30]    [c.59]    [c.107]    [c.106]    [c.210]    [c.94]    [c.86]   
Радиохимия и химия ядерных процессов (1960) -- [ c.477 ]

Радиохимия (1972) -- [ c.361 , c.363 ]

Основы общей химии Т 1 (1965) -- [ c.43 ]

Основы общей химии том №1 (1965) -- [ c.43 ]




ПОИСК





Смотрите так же термины и статьи:

Радон



© 2025 chem21.info Реклама на сайте