Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радон открытие

    РАДОН ОТКРЫТИЕ, ИЗОТОПЫ РАДОНА [c.360]

    Атмосферный воздух. Содержание радона в воздухе на открытой местности на территории деятельности ОАО равно 7-8 Бк/м на площадке для хранения труб -- 24 Бк/м , в закрытых помещениях -- операторской и санпропускнике на этой же площадке 8-16 Бк/м . Содержание радона в сточных водах изменяется от 3,8 до 6,1 Бк/л. Все приведенные значения характерны для районов с нормальным радиационным фоном и существенно ниже допустимых норм. Отмечена повышенная скорость эманирования радона (выход из почвы) в отдельных точках на сухих картах полей испарения, которая достигает 0,167 Бк/м при норме 0,08 Бк/м". В то же время суммарный выброс радона в атмосферу с этих участков [c.103]


    Второй электрон на 5й -оболочке появляется только у гафния (2 = 72). А полностью б -орбитали заполняются у атома ртути. Таким образом, десять металлов от лантана до ртути (без лантаноидов) входят в третью десятку элементов вставной декады. Тогда лантаноиды, у которых происходит заселение 4/-орбиталей, рассматриваются как вставка во вставку, так как они вклиниваются между лантаном и гафнием. У таллия начинает заполняться 6/з-оболочка, которая завершается в атоме радона. В незаконченном седьмом периоде у франция начинается, а у радия заканчивается заполнение 75-оболочки. Атом актиния, как и лантана, начинает заполнение -оболочки. Для актиния это будут 6й-орбитали. Актиноиды (90—103) застраивают 5/-оболочку. Так как с ростом порядкового номера разница в энергиях соответствующих орбита-лей делается все меньше (см. рис. 18), в атомах актиноидов происходит своеобразное соревнование в заполнении 5/- и 6 -орбита-лей (табл. 3), энергии которых очень близки. У 104-го элемента курчатовия, открытого в Дубне под руководством акад. Флерова Г. Н., очередной электрон заселяет 6й-оболочку, доводя ее до 6с 2. Поэтому курчатовий является химическим аналогом гафния, что доказано экспериментально. По-видимому, у 105-го элемента (впервые также полученного в лаборатории акад. Флерова в 1969 г.) 6й -оболочка будет состоять из трех электронов, т. е. 105-й элемент должен быть химическим аналогом тантала эка-танта-лом. Особенности заполнения электронных слоев и оболочек атомов Периодической системы  [c.57]

    Вскоре было обнаружено, что излучательной способностью обладает и торий, а в 1898 г. супругами Марией и Пьером Кюри были открыты два новых химических элемента — радий и полоний. Излучательная активность радия вместе с элементами, образующимися из него, оказалась в миллион раз больше активности урана. Мария Кюри предложила термин радиоактивность лля обозначения способности элементов к самопроизвольному излучению. В последующие годы были открыты еще некоторые радиоактивные элементы— актиний, эманации радия, тория и актиния (названные радоном, тороном, актиноном) и многие другие. При этом каждое из выделенных радиоактивных простых тел рассматривалось как самостоятельный химический элемент. Количество подобных элементов превосходило число клеток в Периодической системе, и некоторые из них обладали тождественными химическими свойствами с уже известными. Введение понятия изотопа уменьшило их число. Оказа- [c.393]

    Уже вскоре после открытия радия было замечено, что находящиеся поблизости от него вещества сами становятся радиоактивными. Происхождение этой наведенной радиоактивности стало ясным лишь тогда, когда выяснилось, что распад радия протекает по схеме На = Не + Рп и что один из этих инертных газов — радон — подвергается дальнейшему распаду. Продукты последнего, оседая на веществах, с которыми мог соприкасаться радон, и обусловливают в наведенную радиоактивность. [c.494]


    Естественные радиоактивные элементы в периодической системе, Первые.из открытых радиоактивных элементов располагались в самом конце периодической системы элементов. Основные законы и закономерности радиоактивного распада были установлены как раз на примере элементов с порядковыми номерами от 84 (полоний) до 92 (уран). Были обнаружены следующие специфические свойства радиоактивных элементов а) способность вызывать почернение фотопластинки (фотохимический эффект) б) выделение газов при радиоактивном распаде (образование гелия и различных изотопов радона) в) выделение тепла при радиоактивном распаде г) возбуждение флуоресценции. [c.59]

    Естественные радиоактивные изотопы, т. е. изотопы, образующиеся в природе помимо деятельности человека, были обнаружены у очень многих элементов начала и середины периодической системы. В табл. 10 приводятся естественные радиоактивные изотопы элементов с порядковыми номерами от 1 до 83 (т. е. до тех естественных элементов, радиоактивные свойства которых были давно открыты и изучены), радиоактивность которых в настоящее время бесспорно установлена. Из табл. 10 видно, что, помимо девяти тяжелых радиоактивных элементов, известных еще с первых десятилетий исследования радиоактивности (полоний, астат, радон, франций, радий, актиний, торий, протактиний и уран ), естественные радиоактивные изотопы существуют, по крайней мере, еще у 46 химических элементов. Таким образом, большая часть элементов периодической системы обладает естественной радиоактивностью. [c.60]

    Во-вторых, изучение радиоактивных цепочек привело к открытию явления изотопии. Было замечено, что многие радиоактивные элементы, составляющие определенные звенья в цепочке распада, обладают одинаковыми химическими свойствами и их невозможно разделить никакими химическими операциями. Например, при распаде полония и таллия (см. рис. 10) образуются элементы, подобные по своим свойствам свинцу. При распаде радона и висмута образуются два полония. Видно, что эти элементы различаются только атомными весами. Так, свинец имеет три вида атомов с атомными весами 214, 210 и 206 висмут — два вида с атомными весами 214 и 210. Содди в 1911 г. такие разновидности атомов одного химического элемента назвал изотопами, что означает занимающие одно место в периодической системе элементов Д. И. Менделеева. [c.33]

    Другим новым семейством стали инертные газы. Первый из них — аргон — был открыт шотландцем У. Рамзаем как солидная (более 1%) примесь к воздуху в 1894 г. Он же в течение ближайших 5 лет открыл и остальные инертные газы, кроме радона. Инертные газы хорошо вписались в Периодическую систему в виде нулевой группы, так как еще в течение 60 лет считалось, что они инертны и не проявляют никакой валентности. Новое дыхание Периодическая система приобрела после важнейших физических открытий в начале XX в., о которых пойдет речь в разделе 3 Строение атома . [c.18]

    Радон действительно открывали неоднократно, и в отличие от других подобных историй каждое новое открытие не опровергало, а лишь дополняло предыдущие. Дело в том, что никто из ученых не имел дела с элементом радоном — элементом в обычном для нас понимании этого слова. Одно из нынешних определений элемента — совокупность атомов с общим числом протонов в ядре , т. е. разница может быть лишь в числе нейтронов. По существу элемент — совокупность изотопов. [c.299]

    Элемент Я 104 (Курчатовий) является гомологом гафния. Предполагается, что элемент Я 105 (Нильсборий) — гомолог тантала, № 106— гомолог вольфрама, № 107—гомолог рения и так далее до не открытого еще элемента 118, который должен быть гомологом благородного газа — радона [c.12]

    Первым этапом, начавшимся в 1898 г., явились исследования П. Кюри и М. Кюри, вызвавшие большое число работ, посвященных главным образом открытию, изучению свойств, установлению местоположения в периодической системе и генетических связей естественных радиоактивных элементов и изотопов. В этот период было открыто около 40 естественных радиоактивных изотопов и 5 новых радиоактивных элементов (полоний, радон, радий, актиний, протактиний). Большое значение имело установление широко известного правила сдвига Содди — Фаянса. Все обнаруженные и изученные в этот период радиоактивные вещества оказались изотопами таллия, свинца, висмута, полония, радия, актиния, тория, протактиния и урана. [c.13]

    В самые последние годы были открыты соединения фтора е атомами инертных газов — радона и ксенона с общими формулами ХРг, Хр4 и ХРб- Стабильность этих веществ возрастает с повышением порядкового номера инертного газа. Дифторид ксенона образуется с выделением около 10 ккал при 400° С из ксенона и фторида и представляет собой бесцветное твердое вещество, медленно сублимирующееся при обычной температуре с давлением пара около 4 мм рт. ст. При 140° С это вещество плавится при 100° С оно имеег давление пара, равное 318 мм рт. ст. Полагают, что химические связи в ХеРг на 50% ионны и на 50% ковалентны. В ионной форме предполагают структуры [c.248]


    Радон, открытый Дорном, это самый долгоживущий изотоп элемента Л 86. Образуется при альфа-распаде радия-226. Массовое число этого изотопа — 222, период полураспада — 3,82 суток. Существует в природе как одно из проме/йуточных звеньев в цепи распада урана-238. [c.305]

    В земной коре в атомных процентах содержится 1,4 10 % селена, 1,5-10 % теллура и 2 10 % полония. Известен ряд минералов, содержащих селен и теллур, например науманит А 25е, гессит ЛЕгТе и др. Однако минералы, содержащие эти элементы, встречаются очень редко. Чаще селен и теллур бывают спутниками серы, как самородной, так и ее соединений, изоморфно замещая в последних серу. Основными источниками получения селена и теллура служат отходы сернокислотного производства, накапливающиеся в пылевых камерах и в промывных башнях (ил), а также осадок, остающийся пр г электролитической очистке меди. Полоний чаще всего извлекают из так называемого активного налета, образующегося при радиоактивном распаде радона. Открыты теллур в 1798 г., селен — в 1817 г., а полоний был предсказан Д. И. Менделеевым и открыт Марией Склодовской-Кюри и Пьером Кюри в 1898 г. Название теллур происходит от греческого слова тел-лус , что значит земля , а селен—от греческого слова селене , что значит луна . Название селен>> было дано Берцелиусом как ближайшей к Земле планетой является Луна, так и ближайшим по свойствам к теллуру элементом — селен. [c.286]

    После окончательного утверждения атомной теории химическим элементом стали называть совокупность атомов, имеющих одинаковый атомный вес. С открытием явления изотопии химическим элементом стали называть вид атомов, характеризующихся одинаковым зарядом ядра или порядковым номером. Каждую разновидность элемента или каждый его изотоп можно считать элементом. Поэтому изотопу присвоено название протия, изотопу — название дейтерия и символ D, а изотопу — название трития и символ Т. Специальные названия имеют не только изотопы водорода, но и изотопы элемента с Z = 86 sIRn — называется радон — торон п [c.39]

    Присутствие гелия установлено во всех минералах, обладающих радио aliTHBHbiMn свойствами. Это объясняется тем, что а-лучи, испускаемые радиоактивными элементами, являются ионизированным гелием. Некоторые радиоактивные минералы, как, например, торианит с острова Цейлона, может содержать от 8 до 10,5 мл гелия на 1 г. Небольшое количество аргона также было открыто в некоторых радиоактивных минералах. Радон содержится в ряде радиоактивных минеральных вод. [c.635]

    Вслед за фторидами ксенона удалось получить и фторид радона. Однако из-за сильной радиоактивности радона это соединение пока еще мало изучено. Получены и фториды криптона КгР-2 и Кгр4, которые также оказались значительно менее устойчивыми, чем соответствующие соединения ксенона. Соединения же неона, аргона и гелия пока еще не получены. Развитие экспериментальной техники, видимо, приведет к открытию соединений и этих эле.ментов. [c.201]

    Относительно электронной конфигурации тория пока еще не высказано какое-либо определенное утверждение. По-видимому, для тория в основном его состоянии расположение электронов сверх конфигурации радона можно принять 7s или 5 6d7s [131, 647, 1774, 1816, 1820, 1896, 1925]. Однако до настоящего времени еще точно не установлено, у какого из элементов актиноидного ряда появляется первый 5/-электрон [409, 513, 880, 944, 1169, 1747, 1774, 2019]. Это и некоторые другие обстоятельства пока не позволяют утверждать, что именно торием начинается второй ряд переходных элементов [5, 153, 952]. По-видимому, этот вопрос будет окончательно разрешен после открытия 104-го элемента. [c.10]

    Работая над рефератом об элементе радоне, я столкнулась с нротиво-речивымп объяснениями по поводу открытия этого элемента. В Детской энциклопедии (издание 1966 г.) говорится, что радон открыл в 1900 г. английский ученый Резерфорд. Малая Советская Энциклопедия утверждает, что радон открыл французский ученый Дебьерн, а в некоторых учебниках по химии честь открытия этого элемента приписывается Рамзаю. [c.299]

    Актииоп, открытый Дебьерном, тоже член радиоактивного семейства тория. Это третий природный изотоп радона и из природных — самый короткоживущий. Его период полураспада меньше 4 секунд (точнее, 3,92 секунды), массовое число 219. [c.305]

    Это обстоятельство не могло не сказаться на развитии исследований в области радиоактивности. Ученые разных стран стали изучать препараты радия и продукты его распада. Это принесло новые открытия. В 1899 г. молодой французский физик, один из немногих помощников супругов Кюри, Андрэ Дебьерн открыл новый радиоактивный элемент актиний. В январе 1900 г. английский ученый А. Дорн сообщил об открытии эманации радия — газообразного радиоактивного вещества, оказавшегося новым элементом радоном. В мае 1900 г. открыто излучение радия, подобное рентгеновским Х-лучам (гамма-излучение). [c.319]

    Доза облучения от земных источников радиации зависит от образа жизни людей. Использование природного газа для отопления и приготовления пищи, открытых угольных жаровен, герметизация помещений с целью сохранения тепла — все это увеличивает уровень облучения людей естественными источниками радиации. Большую часть дозы человек получает от радионуклидов и продуктов его распада, а также от попадающих в его организм вместе с вдыхаемым воздухом или пищей. Согласно оценкам НКДАР, радон вместе с дочерними продуктами радиации распада ответственен примерно за 75 % годовой индивидуальной эффективной эквршалентной дозы облучения, получаемой населением от земных источников радиации [5]. При этом большая часть дозы облучения обусловлена дочерними продуктами распада радона, а не самим радоном. По рис 7.1, на котором приведена цепочка распада нуклидов, генетически связанных с видно, что на продукты распада радона, включая а, р и у-излучение, приходится 22,063 МэВ (из полной энергии 27,553 МэВ), т. е. 80 %. В числе дочерних продуктов три нуклида ( Ро, Ро и Ро) испускают а-частицы и один из них — Ро находится практически всегда в равновесии с из-за малого периода его полураспада. При вдыхании воздуха в легкие вместе с радоном попадают и продукты его распада, оседающие на поверхности легких, активная площадь которых составляет около 50 м . Продукты распада радона, образовавшиеся в объеме легких, примерно на 80 % тоже задерживаются поверхностью легких, подвергая их непрерывному облучению а- и р-частицами. [c.143]

    Рассмотренные закономерности эксхаляции радона, накопление радона и продуктов его распада дают возможность оценить средние значения их объемных активностей в воздухе помещений, необходимые для определения среднего уровня облучения людей. Особенностью такой оценки является то, что она характеризует облучение людей вследствие эксхаляции радона из строительных конструкций, в то время как оценки, основанные на экспериментальных измерениях объемных активностей, включают суммарное облучение вследствие эксхаляции радона из строительных материалов и из почвы под зданием. Коэффициенты перехода от объемной эквивалентной равновесной активности и к дозам облучения людей зависят от параметров модели легких и принимаемого значения доли свободных атомов. Оценки этих коэффициентов проведены экспертами Международной комиссии по радиологической защите с учетом данных о средней вероятности нахождения людей в жилых, служебных и общественных помещениях, а также на открытом воздухе с учетом суточных вариаций объемной активности радона и его дочерних продуктов в воздухе и суточной вариации скорости дыхания. Полученные таким образом значения дозовых коэффициентов представлены в табл. 7.24. [c.150]

    Открытие. Гелий обнаружен в 1868 г. методом спектрального анализа солнечного излучения (Локьер и Франилечд, Англия Жансен, Франция) на Земле гелий был найден в 1894 г. в минерале клевеите (Рамзай, Англия). Остальные стабильные благородные газы открыты на Земле в период 1892— 1897 гг. (Рамзай, Рэлей и др., Англия). Радиоактивные изотопы радона обнаружены только в XX в. [c.388]

    Антропогенные источники поступления в окружающую среду. Процессы добычи и переработки урановых руд сопровождаются выделением в воздушную среду пыли, содержащей высокоагрессивные изотопы уранового ряда (восемь изотопов, характеризующихся а-излучением, и шесть излучающих р-частицы). Источниками пыле- и газовыделения сложного и многокомпонентного состава, содержащими У., радон, радий, полоний, оксид кремния и др., являются бункеры, шахты, отвалы, открытые склады руды, устья воздуховыдающих выработок, процессы дробления, пересыпки и транспортировки урановых руд. Дисперсность и состав пылей различны в зависимости от производственных условий на участке дробления руды размеры большинства частиц достигают 10 мкм 27% частиц — 2 мкм иа участках грохочения до 53 % частиц имеют размеры до [c.273]

    После того как были открыты гелий и аргон, вывод о существовании неона, криптона, ксенона и радона ясно следовал из периодического закона попеки этих элементов в воздухе привели к открытию первых трех из них радон был открыт позже при проведении работ по изучению свойств радия и других радиоактивных веществ. В результате изучения соотношения между атомной структуро и периодическим законом Нильс Бор высказал предположение, что элемент 72 по своим свойствам должен быть похож на цирконий. Дж. Хевеши и Д. Костер, следуя этому указанию, провели тщательное изучение циркониевых руд и открыли недостающий элемент, который они назвали гафние.м. [c.92]

    Радон (Rn) — радиоактивный инертный газ, не имеющий при нормальных условиях цвета, запаха и вкуса. Жидкий радой — бесцветная фосфоресцирующая жидкость, а твердый испускает ярко-голубое свечение. Открытие радона — результат раниих работ по изучению радиоактивности. В 1899 г. американский физнк Оуэнс обнаружил, что при распаде тория образуется некая радиоактивная субстанция, которую можно удалить из растворов тория потоком воздуха. Эту субстанцию Резерфорд назвал эманацией и доказал, что она представляет собой радиоактивный газ. [c.547]

    В 1898 г. после открытия аргона Рамзай и Трейверс при фракционной перегонке больших количеств жидкого воздуха открыли неон, ксенон и криптон Другой важный представитель благородных газов, гелий был обнаружен в 1.868 г. спектроскопическим путем в солнечной хромосфере астрономом Жанссеном во время затмения в 1869 г. Локьер и Франкланд подтвердили это наблюдение, в 1882 г. Пальмиери обнаружил гелий в некоторых горных породах и вулканической лаве Везувия в 1889 г. Гиллебранд нашел его в газах — включениях в уранините, и, наконец, в 1895 г. Рамзай и Клеве независимо друг от друга выделили гелий из газов, содержащихся в клевеите, разновидности урановой смоляной руды. Таким образом была открыта группа из пяти благородных газов гелий (ат. вес 4,003), неон (20,183), аргон (39,944), криптон (83,7) и ксенон (131,3), молекулы которых одноатомны и неспособны вступать в соединения К этой группе благодаря Резерфорду и Содди прибавилась затем эманация, или радон (Еш или Кп = 222). [c.277]

    В 1896 г. Анри Беккерель (1852— 1908) открыл радиоактивность солей урана в 1898 г. Г. К. Шмидт наблюдал, что сопи тория также обладают способностью к радиационному излучению. Однако открытием, которое поистине революционизировало физику и химию, было открытие радия, осуществленное в 1898 г. в Париже супругами Пьером Кюри и Марией Склодовской , переработавшими несколько тонн остатков урановой смоляной руды в трудных условиях — при ограниченности средств и без подходящей лаборатории. Незадолго до этого супруги Кюри открыли полоний Вскоре открытия в группе радиоактивных элементов стали следовать одно за другим. В 1899 г. Дебьерн открыл актиний, в 1901 г. Гофман и Штраус — радиосвинец, в 1902 г. Гизель — эманацию (радон), в 1903 г. Марквальд — радиотеллур, в 1906 г. Болтвуд — ионий, в 1906—1907 гг. Ган — радиоактиний и мезо-торий. Эти открытия привели к основанию новой науки — науки о радиоактивности , в развитии которой, кроме упомянутых исследователей, принимали участие Мария Кюри (после трагической смерти Пьера Кюри), Дебьерн и их ученики в Париже Крукс, Рамзай, Резерфорд, Содди в Англии, Фаянс в Австрии, Дорн, Генрих и другие в Германии .  [c.415]

    В результате этих исследований были открыты соединения благородных газов и найдены новые методы их разделения. Особый интерес представляют соединения радона Rn 6Н2О, Rn гСбНбОН и др. Более подробно этот вопрос будет рассмотрен ниже (гл. Х1П). [c.92]

    В 1931—1943 годах учеными были сделаны попытки обнаружить элемент № 85 в природе. Он мог быть спутником иода, продуктом а-распада франция или Р -распада полония. Его искали в иоде, морской воде, продуктах распада изотопов радия и радона, монаците, урановой смоляной руде, минералах железа и платины. Ряд ученых заявили об открытии элемента с порядковым номером 85, и он последовательно получал названия алабамий, декин, Гельвеций, англогельвеций, лептин. Все эти открытия были ошибочными. [c.288]

    В семействах радиоактивных элементов можно было ожидать образования элемента с порядковым номером 87 при а-распаде изотопов элемента с порядковым номером, 89 или -распаде изотопов элемента с порядковым номером 86. Майер, Гесс и Панет обнаружили у 8эАс а-излучение, однако приписали это излучение протактинию после его открытия в 1918 г. У изотопа актиния— МзТЬг а-излучение не было обнаружено. Не был найден и -распад у изотопов элемента с порядковым номером 86 — радона, торона и актинона. [c.355]


Смотреть страницы где упоминается термин Радон открытие: [c.102]    [c.396]    [c.397]    [c.485]    [c.488]    [c.473]    [c.300]    [c.488]    [c.162]    [c.163]    [c.88]    [c.147]    [c.65]    [c.146]   
Радиохимия (1972) -- [ c.360 ]

Использование радиоактивности при химических исследованиях (1954) -- [ c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Радон



© 2025 chem21.info Реклама на сайте