Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Урановая земля

    От кислорода к теллуру содержание элементов на Земле резко падает, а полоний, не имея ни одного стабильного изотопа, встречается в урановых и ториевых рудах как один из продуктов радиоактивного распада [c.306]

    Природные соединения и получение металлов. Элементы подгруппы марганца сильно различаются по распространенности в природе. Если марганец относит к числу наиболее распространенных элементов на Земле (0,09 мае. долей, %) и из тяжелых металлов в периодической системе следует непосредственно за железом, то рений относится к числу довольно редких элементов ( Ю- мас. долей, %). Что же касается технеция, то в природе этот элемент встречается в исчезающе малых количествах как один из нестабильных продуктов распада урана (порядка 1 10 г на 1 г урановой смоляной руды). [c.373]


    Природные соединения и получение металлов. Если марганец относится к числу наиболее распространенных элементов на Земле и следует непосредственно за железом, то рений относится к числу довольно редких элементов. Что же касается технеция, то в природе этот элемент встречается в исчезающе малых количествах как один из нестабильных продуктов распада урана (порядка 1 г на 1 г урановой смоляной руды). [c.474]

    Наконец, особое внимание уделяется в настоящее время влиянию радиоактивности. Современная медицина связывает распространение многих инфекционных и хронических заболеваний (пневмония, эмфизема, болезни сердца и почек, диабет, паралич) с повыщением радиационного фона на Земле или с так называемыми малыми дозами облучения. Давно известно, что радиоактивное облучение вызывает раковые заболевания, в том числе лейкемию — рак крови, причем риск заболевания прямо пропорционален величине облучения. Профессиональные заболевания такого рода многократно отмечены у шахтеров урановых рудников, работников, использующих светящиеся радиевые краски, работающих на ядерных реакторах и предприятиях по переработке ядерного топлива, врачей-радиологов. [c.181]

    Количественный анализ был проведен для установления концентрации тяжелых металлов (Си, РЬ, Zn, d, r и др.) в загрязненных природных водах (р. Нева, Санкт-Петербург), для обнаружения урана в водах заброшенных урановых шахт (Германия, Россия), содержания солей в грунтовых водах (земля Брауншвейг, Германия), тяжелых металлов в дыме мусоросжигательных заводов (проточный анализ, Дания), для определения Са , Mg ", фосфатов и др. ионов в крови и плазме крови человека [187, 188, 189-192]. Во всех указанных случаях применение мультисенсорной системы — электронного языка давало новые возможности для химического анализа, который нельзя было бы провести с помощью единичных сенсоров или другими методами. Например, таким образом решалась проблема недостаточной селективности сенсоров по отношению к ионам Са " и (анализ крови), или открывалась возможность определения концентрации ионов (например, Zvi, Ге " или UOj ), для которых не существует хороших селективных электродов (рис. 6.17). Некоторые результаты количественных определений приведены в табл. 6.14 и 6.15. [c.732]

    Подсчитано, что быстрое освобождение энергии урана, заключенного в земной коре, раскалило бы нашу планету до температуры в несколько тысяч градусов. К счастью, урановое тепло в толще Земли выделяется постепенно, по мере того как ядра урана и его дочерних продуктов проходят по длинной цепи радиоактивных превращений. О том, что этот процесс очень медленный, свидетельствуют периоды полураспада природных изотопов урана. Для урана-235 он равен 7-10 лет, д.ля урана-238 — 4,47 10  [c.359]


    Как пи медленно выделяется урановое тепло, оно все-таки существенно подогревает Землю. Однако если бы в массе планеты концентрация урана была такой же, как в двадцатикилометровом верхнем слое, то температура Земли была бы намного выше существующей. Эти расчеты, подтвержденные прямыми измерениями (на больших глубинах вулканические породы беднее ураном), показывают, что по мере продвижения к центру Земли концентрация урана падает. [c.359]

    Ежегодно во всем мире сжигается около 4,6 Ю т угля (1987 г.). Все добываемые из недр Земли угли содержат радионуклиды урановых и ториевого семейств. Причем и урановые, и ториевые ряды распада в угле более близки к равновесию по сравнению с рядами нефтяных и газовых месторождений. В углях зафиксировано наличие следующих радионуклидов  [c.159]

    Радионуклид 11 и продукты распада его ряда вносят существенный вклад в радиационный фон окружающей среды. Особенно велика роль в радиационном воздействии на человека радиоактивных продуктов распада члена уранового ряда (3,8235 сут.). Поскольку уран содержится во всех природных строительных материалах, в почве и грунте, то газ радон, находящийся с ним в вековом равновесии, в результате диффузии из этих сред попадает в атмосферный воздух и в помещения. Продукты распада радона в основном через легкие попадают в организм человека. Поглощенная доза от этих продуктов составляет около 50 % от дозы, получаемой человеком от всех природных источников облучения на Земле. [c.286]

    Свинцово-урановый метод. Уран и торий при естественном распаде образуют изотопы свинца, что позволяет измерять геологический возраст урановых и ториевых минералов. Вопросы, которые позволяет решить свинцово-урановый метод, весьма обширны. Сюда входит определение абсолютного возраста Земли в целом, составление геохронологической шкалы докембрия, определение возраста интрузивных тел, месторождений. Конечные продукты распада уранового и ториевого ряда — изотопы свинца, причём уран-238 пре-враш,ается в свинец-206, уран-235 — в свинец-207, торий-232 — в свинец-208. [c.561]

    В природе отсутствует семейство радиоактивных элементов с массовыми числами 4п + 1. Наиболее- долгоживущим членом этого семейства является Ыр. Его период полураспада мал по сравнению со временем существования земли, и он полностью распался. Однако в результате реакций урана с нейтронами в урановых рудах непрерывно образуются 237 р Содер- [c.373]

    Проблема радиоактивных отходов также в основном относится к компетенции химиков и геохимиков. Если эти отходы должны храниться под землей, необходимо отыскать такие достаточно стабильные участки, из которых эти опасные вещества не будут распространяться. Кроме того, необходимы более эффективные методы отделения наиболее опасных радиоактивных элементов, таких как актиниды, которые через несколько сотен лет составят главную угрозу здоровью людей. Следует также глубоко изучить геохимию предполагаемых мест захоронения. Если захоронение проводится во временных контейнерах, подлежащих выемке, возникают проблемы, связанные с возможностью их корродирования и разрушения под воздействием интенсивной радиации. Далее, необходимо повысить чувствительность аналитических методов, предназначенных для решения самых различных задач — от поиска новых урановых месторождений до контроля за состоянием окружающей среды. Они должны предупреждать о возможной опасности, прежде чем таковая станет реальностью. Наконец, мы должны проникнуть в пока не исследованную область химии про- [c.73]

    Большое число встречающихся в природе короткоживущих (по отношению к геологическому времени образования земли) радиоактивных изотопов является результатом последовательного распада и ТЬ , которые образуют три известных радиоактивных семейства (рис. 134). Вследствие этого выделение указанных радиоактивных изотопов сводится к переработке урановых и ториевых руд. [c.213]

    Три полученных образца были тщательно высушены их плотности, которые были определены при 25 °С и давлении 1 атм, составляли для образца I 1,2572 г/л, для образца II 1,2505 г/л и для образца III 1,2564 г/л. Последняя величина колебалась при изменении относительных количеств аммиака и кислорода, и многие экспериментаторы пренебрегли бы этими колебаниями, отнеся их за счет погрешности эксперимента. Однако Рэлей и Рамзай повторили и выполнили в измененном виде эксперимент Кавендиша и получили инертный газ, который назвали аргоном. Данные спектрального анализа убедили их, однако, что этот газ не является индивидуальным элементом, и последующие исследования, продолжавшиеся несколько лет и включавшие тщательную дистилляцию сжиженного газа, привели к получению относительно чистых образцов аргона, неона, криптона и ксенона. Спектральные данные подтвердили, что это новые элементы, а измерение их теплоемкости показало, что они моно-атомны. Таким образом в периодической таблице Менделеева появилась новая группа элементов. Затем Рамзай нашел гелий (элемент, который Локьер обнаружил в солнечной атмосфере) в урановых рудах, где он образуется из альфа-частиц в процессе геологического развития Земли. В 1900 г. с открытием радона в радиевых рудах эта группа элементов была заполнена. Об открытии радона первым заявил Дорн, однако Рамзай и другие исследователи почти одновременно пришли к такому же результату. [c.333]


    В рассеянном состоянии могут встречаться и многие другие элементы, в частности литий (в магнезиальных и железистых минералах, в первую очередь в слюдах), цезий (в калиевых минералах, обогащенных рубидием), серебро (в свинецсодержащих минералах), стронций (в кальциевых минералах), иттрий и редкие земли (в кальциевых и урановых минералах), ниобий и тантал (6 титановых минералах), уран и торий (в редкоземельных минералах). Однако мировое произ-во этих элементов в основном базируется на собственных их месторождениях, хотя нек-рая часть извлекается попутно из руд других металлов. [c.251]

    Таким образом, с помощью масс-спектрографического анализа урановых минералов можно определить их возраст. Хотя процесс образования РЬ из и происходит в несколько стадий, скорость его определяется только самой медленной реакцией. По содержанию РЬ > и периоду полурас-пада I/ установлено, что возраст минералов составляет примерно 5 миллиардов лет. Несомненно, возраст Земли не может быть меньше, чем 5-10 лет. Это тот момент, когда были заведены урановые часы — но сами часы могут быть и гораздо старше . Для выяснения этого вопроса нам придется обратиться к другим типам радиоактивного распада. [c.655]

    По новейшим исследованиям, плутоний уже нельзя называть искусственным элементом, ибо в 1971 году его обнаружили в природном редкоземельном минерале бастнезите, не содержащем урана. В 90 кг горной породы содержится 10 г плутония-244, что было установлено с помощью масс-спектрографа. Это — единственный изотоп 94-го элемента, который еще не совсем исчез с лица Земли за время ее существования. Другие изотопы плутония, которые сегодня в виде следов еще находятся в природных урановых рудах, имеют, как уже говорилось, искусственное происхождение. [c.159]

    Окиси тяжелых металлов по формуле R часто заменяют друг друга, например во многих из купоросов и других искусственных солях. Иногда они изоморфны щелочам и щелочным землям, например Си изоморфна Са в урановой слюдке РЬ изоморфна Ва, Sr, Са в сернокислых (В S), углекислых, азотнокислых и других солях Ag изоморфна Na в сернокислых солях и других. [c.559]

    Из этого следует, что радиоактивные элементы могут быть использованы как идеальные часы, ход которых во все эпохи формирования Земли как планеты подчинялся одному неизменному закону. Это позволяет оценивать возраст различных горных пород и самой Земли. Уран довольно широко распространен в земной коре. В любой урановой руде наряду с самим ураном содержатся продукты его распада, например свинец. Определяя в такой руде соотношение между количествами образовавшегося свинца и оставшегося урана и зная период полураспада последнего, можно вычислить время,, в течение которого происходило это радиоактивное превращение, т. е. возраст данной руды. Оценка возраста Земли, полученная таким способом, приводит к величине около 3 миллиардов лет. [c.270]

    Запасы энергии, содержащейся в разведанных ныне залежах урановых руд, более чем в 10 раз превосходят запасы энергии залежей угля и нефти на земле урановое топливо идет на смену органическому. Но еще более неисчерпаемыми являются запасы водорода на нашей планете. Вот почему первоочередной научной проблемой и для нашей страны, и для всего человечества является проблема укрощения термоядерной реакции и изыскание способов управления ею в целях использования этой великой солнечной силы для мирных целей. [c.210]

    В процессе весьма трудоемких и кропотливых исследований Клапроту удалось сделать несколько крупных отк]1Ытий. Так, в 1789 г. он открыл в смоляной руде землю, которая содержала новый, до того времени неизвестный металл. Клапрот назвал этот металл ураний (скоро этот металл стали называть просто ураном ) в честь открытия астрономом Гершелем планеты Уран. Несмотря на попытки восстановить урановую землю прокаливанием ее с бурой и углем, Клапроту не удалось выделить чистый металл. [c.399]

    С вершин современной науки, конечно, ясно видно, какими примитивными средствами и приемами исследования пользовались химики-аналитики XVIII в. Многие окислы тяжелых и щелочных металлов оставались иеразложенными, отдельные окислы (титановая земля, урановая земля и др.) принимались за элементы, требовалось разработать методики разделения сходных элементов. Словом, предстояло еще много сделать. Но если сравнить результаты работ химиков-аналитиков XVII в. с тем, что было сделано в предыдущие века, то нельзя не восхититься мощным прогрессом этого направления развития химии. [c.50]

    Распад урана — настолько постоянный и характерный процесс, что его можно использовать для определения возраста Земли. В 1907 г. американский химик Бертрам Борден Болтвуд (1870— 1927) предположил, что при такого рода определениях можно руководствоваться содержанием свинца в урановых минералах. Если предположить, что весь свинец в минералах появился в результате распада урана, то легко вычислить, сколько на это потребовалось времени. С помощью этого метода удалось определить, что возраст твердой земной коры исчисляется по крайней мере четырьмя миллиардами лет. [c.165]

    ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ (за-урановые элементы) — радиоактивные химические элементы, расположенные вслед за ураном в конце периодической системы элементов Д. И. Менделеева. Т. э. имеют п. н. 93—103, принадлежат к группе актиноидов. Все изотопы Т. э. обладают периодами полураспада, значительно меньшими, чем возраст Земли, поэтому они отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Исследование физических свойств Т. э. показало, что они аналоги лантаноидов. Из всех Т. э. наибольшее значение имеет зврц как ядерное топливо, используется в изотопных источниках тока, применяемых для питания радиоаппаратуры на спутниках и др. [c.253]

    Содержание в земной коре. На земле актиноиды содержатся (мае. доли, %) и 3-10 , Th 10 Ра —следы. Периоды полураспада этих элементов достаточно велики. Остальные актиноиды получают искусственно при осуществлении ядерных реакций. Уран и торий в виде соединений входят в состав разных гранитных пород. Наиболее важные руды урана уранит UOa, урановая смолка (U Oe), карнотит Ka(U02)2 (V04)2-nHa0 и тюямунит a(U02)2(V04)2-rtH20. Торий входит в состав минералов монацит (Са, Lu, Th., . )Р04, торит ThSiOi и торианит (Th, и)Оа. [c.360]

    Радиоактивные элементы в рассеянном виде встречаются во всех горных породах. Известно много и радиоактивных минералов, например а) первичные минералы пегматитов — уранинит, клевеит, бетафит, самарскит, монацит б) первичные гидротермальные минералы — настурап, урановая чернь в) вторичные минералы — кюрит, радиофлюорит, радиоборит и др. Проблемы, связанные с распространением, распределением и скоростью распада радиоактивных элементов в различных породах, с миграцией радиоактивных элементов при геологических процессах, имеют большое значение для геохимии, петрографии и геохронологии. На основании большого количества наблюдений радиоактивности пород установлено, что изверженные породы обладают большей радиоактивностью, чем осадочные. Радиоактивные элементы выносятся по поверхностям сбросов, разломов и нередко позволяют фиксировать линии тектонических нарушений. Факт образования тепла при распаде радиоактивных ядер учитывается при разрешении вопросов, связанных с изучением внутреннего теплового баланса Земли, магматических, вулканических, а также горообразовательных процессов. Радиоактивность морской воды и морских осадков имеет большое значение для океанографических исследований. Методы, основанные на радиоактивности, также широко используются в прикладной геологии при геофизических поисках и разведках залежей руд металлов и месторождений нефти. В настоящее время геологосъемочные партии, как правило, проводят измерения радиоактивности пород радиометрами. В скважинах проводится у-каротаж. [c.13]

    К числу реакций первого порядка относятся процессы разложения некоторых веществ, например оксидов азота. С исключительной точностью подчиняются уравнению для реакций первого порядка все процессы радиоактивного распада. Скорость радиоактивного распада определяется только процессами, происходящими в атомных ядрах, и поэтому не зависят от внешних факторов, таких как температура и давление. Таким образом, радиоактивный распад соверщается со строго определенной скоростью, а по количеству распавшегося вещества можно определить время, в течение которого совершался этот процесс. Следовательно, измерения радиоактивности веществ, присутствующих в земной коре, можно использовать как идеальные, естественные часы для определения продолжительности происходящих в природе процессов, в частности для определения возраста горных пород и Земли. Так, известно, что радиоактивный распад урана (изотопа сопровождается образованием гелия в количестве 8 атомов на I атом урана. Период полураспада урана / =4,5 миллиарда лет. Определяя количество гелия, присутствующего в урановых рудах, можно определить количество распавшегося урана и, следовательно, возраст этих руд. Так как 1/2 = /к1п2 или к= (1п2)/г 1/5,, то возраст руды I можно определить из уравнения (XI.6) в виде  [c.132]

    По происхождешпо П. и. делятся на магматогенные, мета-морфогенные и экзогенные. Каждая из этих упп имеет более дробное деление. Первые (руды Сг, Fe, Ti, Ni, Та, Nb, Zr, Pt, платиновых металлов и др.) образуются при внедрении в земную кору и остывании магматич. расплавов, Метаморфогенные залежи (напр., железные руды Криворожского бассейна, золото и урановые руды Юж. Африки) возникают при высоких давлениях и т-рах в глубоких недрах. В тех же условиях в процессе метаморфизма горных пород могут образовываться месторождения мрамора, графита и др. Экзогенные П. и. (осадочные месторождения горючих ископаемых, строит, материалов, россыпи Аи, Pt, алмазов, руды U, Си, S и др.) возникают в результате процессов, обусловленных внешними по отношению к Земле источниками энергии (преим. солнечным излучением),-при действии ветра, прир. вод, ледников и т.д. [c.601]

    Стационарное состояние и его квазиравновесные свойства хорошо иллюстрируются схемой радаоактивного распада, в которой исходное вещество играв роль источника энергии и массы. В природе сз ествуют три радиоактивных семейства—урановое, ториевое и актиниевое, с исходными веществами Ть232 ц23б соответственно. Они характеризуются чрезвычайно большими константами распада, сравнимыми с возрастом Земли. [c.126]

    Предлагается после вьщеления накопившихся в топливе изотопов трансурановых элементов подвергнуть их нейтронной трансмутации в ядерных реакторах. Предполагается при этом, что трансмутации подвергаются также продукты деления с ярко выраженными мшра-ционными свойствами, такие как " 1 и Тс. Конечная радиотоксичность а-излучающих радионуклидов после длительного облучения высокими потоками нейтронов должна быть сравнима с радиотоксичностью пррфодно-го урана вместе с его продутсгами распада. Такие радиоактивные отходы можно захоранивать в тех местах на Земле, откуда была взята урановая руда. Принцип радиационной эквивалентности предполагает замыкание топливного цикла в определенную организацию потоков ядерных материалов с достаточно низкими потерями радионуклидов при переработке облученного топлива. Предполагается также, что после нескольких сот лет выдержки часть радиоактивных отходов, эквивалентных по радиотоксичности извлеченному урану, может быть окончательно захоронена в геологических формациях, оставшихся после добычи урана [13]. [c.170]

    Научные работы посвящены органической и неорганической химии, спектроскопии. В своих первых экспериментах изучал (1878) эссенции и эфиры ненасыщенных кислот. Исследовал (1880-е) летучесть металлов при низких температурах и давлениях. Сконструировал высокоэффективную аппаратуру для создания низких температур путем расширения предварительно сжатых газов. Усовершенствовал (1890) метод разделения редкоземельных элементов фракционной кристаллизацией. Применил этот метод для выделения из самариевой земли нового элемента (существование его предсказал П. Э. Лекок де Буабодран на основании проведенных спектральных исследований). В результате кропотливой работы произвел разделение самариевой земли и открыл (1896) новый химический элемент. После дополнительных спектральных исследований назвал его (1901) европием. Установил присутствие новой спектральной линии в хлориде бария, выделенном из урановых отходов, что послужило одним из доказательств существования радия. [c.169]

    Уран встречается в минералах в виде четырех-. и шестива-лентных ионов, причем в шестивалентном состоянии он находится обычно в виде уранила, который играет роль основания в простых солях или образует комплексные соединения, чаще всего с ванадиевой, мышьяковой, фосфорной, кремневой, титановой, танталовой и ниобиевой кислотами. В таких соединениях катионами являются щелочные или щелочноземельные металлы, редкие земли, а также тяжелые металлы свинец, медь, висмут, железо, марганец 164]. В связи с этим состав урановых минералов очень разнообразен и сложен. Известно очень много (свыше 100) минералов урана. Кроме того, уран встречается в больших или меньших количествах в виде примеси в других минералах — редкоземельных, титановых, циркониевых, танталониобиевых и др. Будучи элементом рассеянным , уран встречается в очень незначительных количествах во многих горных породах, в углистых и нефтяных отложениях, в морской и других природных водах. [c.374]

    В свете изотопных исследований расширяется представление о длительности существования жизни на Земле. Так изотопный состав таких элементов, как сера и углерод, может свидетельствовать о наличии хотя бы первичных форм жизни (Галимов, 1968). Например, в датированных свинцово-урановым методом отложениях железистых формаций Алданского щита (3000 млн. лет) и Вумен Ривер в Канаде обнаруживаются изотопные свидетельства сульфа-тредукции, т.е. следы сульфатредуцирующих бактерий (Шидловский, 1980). В железистой формации Иссуа в Западной Гренландии, по которой свинцово- [c.561]

    Выводы. 1. Геоисторические события, датируемые возрастом от нескольких миллионов до миллиардов лет, исследуются при помощи свинцово-уранового, калий-аргонового, рубидий-стронциевого, трекового, самарий-неодимового, уран-ториевого и др. методов. Из наиболее важных объектов и событий при помощи этих методов были датированы древнейшие породы Земли, метеориты, лунные породы, а также самые древние следы фотосинтезирующих и сульфатредуцирующих организмов. При помощи калий-аргоно-вого и рубидий-стронциевого методов датированы практически все события геологического масштаба. Трековый метод позволил датировать останки древнейших гоминид в районе оз. Рудольфа. [c.583]

    Минералов, в которых обнаружен иттрий, известно больше сотни. Он есть в полевых шпатах и слюдах, минералах железа, кальция и марганца, в цериевых, урановых и ториевых рудах. Но даже если примесь иттрия сравнительно велика — 1—5% (напомним, что медная руда, содержащая 3% Си, считается очень богатой), извлечь чистый иттрий чрезвычайно трудно. Мешает сходство, прежде всего сходство с другими редкими землями, и более отдаленное — с кальцием, цирконием и гафнием, ураном и торием, другими крунноатомными элементами (радиус ионов 0,8—1,2 А). [c.184]

    Тщательные исследования урановых руд (Пеппард, 1951 — 1952) показали, что в них содержатся небольшие количества изотопов gaNp и I4PU. Периоды полураспада этих двух радиоактивных изотопов малы по сравнению с рассчитанным возрастом Земли, и, следовательно, они должны в природе воспроизводиться gsNp по-видимому, при захвате нейтронов ура- [c.167]

    Аффинаж состоит в удалении из урановых концентратов остающихся в них загрязнений. Продуктом аффинажа обычно является один из окислов урана СОз, йзОв или и02- При аффинаже уран освобождают от тех элементов, которые могут мешать разделению его изотопов или последующему применению урана в реакторе. Наиболее существенно то, чтобы он не содержал элементы, сильно поглощающие нейтроны, а именно бор, кадмий и редкие земли. [c.139]

    Хотя в вопросе о роли излучения при зарождении органического вещества имеются неопределенности, существует другой период в истории Земли, в котором химическое действие излучения могло играть роль. Указанное относится к образованию нефти. Эта возможность впервые стала очевидной из следующих фактов урановые минералы и нефть находят совместно, а излучение может вызывать заметные изменения в углеводородах, приводя к конденсации низших углеводородов с выделением водорода (стр. 85). Казалось возможным, что нефть могла образоваться этим путем из углеводородов, например из метана возможно также, что она могла образоваться из высших углеводородов при их радиолитическом распаде [Ь32, Т14]. Однако существуют два главных возражения против этой точки зрения. Первое — геологи обычно считают, что нефть возникает из жидких, твердых или полутвердых органических комплексов. Если это правильно, то все же остается возможность видоизменения однажды образовавшихся углеводородов при воздействии излучения. [c.288]

    Приведенные соотношения позволяют делать важные расчеты, в частности судить о возрасте минералов и Земли. Так, например, анализом урановых руд установлено, что в них на 3 10 весовых частей урана приходится лишь 1 весовая часть радия. Если, предположим, нам известен период полураспада радия (х = 1586 лет), но неизвестен таковой для урана (х = ), то на основании равенстпа Нца -хи — Нц- хд можно, подставляя числовые данные, найти ху. Имеем 1хи = 3 10 -1586 ту = 3 10 1586 = 4,5 10 = 4,5 миллиарда лет. [c.96]

    Учет загрязнений. Изложенная выше общая схема спектрального анализа обогащенных концентратов редких земель базируется на предположении, что лантан, служащий носителем при выделении из пробы микроколичеств определяемых редких земель и внутренним стандартом при спектроскопических определениях, не содержится в исходной навеске анализируемого вещества. Эта схема анализа в значительной степени уменьшает вероятность ошибки в определении концентрации исследуемых редких земель и представляется нам более надежной, чем методика, предложенная Шоттом и Дьюттоном и развитая Хир-том и Нахтрнбом Р°] при определении редких земель в урановых соединениях. В их методе отсутствует элемент сравнения, подвергающийся тем же химическим операциям, как и определяемые редкие земли, и поэтому все ошибки в процессе обогащения пробы неизбежно влияют на результаты анализа. [c.479]

    Говоря об отдельных люминофорах, следует упомянуть своеобразную структуру спектра окиси кальция, которая констатирована одинаково при фото-и катодолюминесценции [79]. Ещё более характерно поведение хромовых люминофоров (А12О3.СГ) и препаратов, активированных редкими землями. Несмотря на своеобразие излучения последних, способ возбуждения не меняет общего характера спектра. Имеет место лишь перераспределение интенсивности между отдельными полосами и их группами [78]. То же самое справедливо относительно урановых соединений [312]. Перераспределение интенсивностей между полосами уже свидетельствует, однако, о влиянии способа подвода энергии на вероятность тех или других излучающих переходов. [c.306]


Смотреть страницы где упоминается термин Урановая земля: [c.168]    [c.346]    [c.346]    [c.517]    [c.624]    [c.562]    [c.194]    [c.99]   
Очерк общей истории химии (1969) -- [ c.399 ]




ПОИСК





Смотрите так же термины и статьи:

Земля



© 2025 chem21.info Реклама на сайте