Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород запасы

    В связи с уменьшением запасов углеводородного сырья большой интерес приобретает метод получения водорода восстановлением водяного пара раскаленным углем  [c.274]

    При биологическом использовании глюкозы в качестве источника энергии ее сгорание протекает не в одну стадию. Разложение глюкозы представляет собой сложный процесс, включающий более 25 стадий. На многих из этих стадий высвобождаемая энергия запасается путем синтеза молекул АТФ. Анаэробная ферментация, или гликолиз, обеспечивает предварительное разложение глюкозы с образованием пировиноградной кислоты, а цикл лимонной кислоты завершает окисление углерода в СО2. Атомы водорода передаются молекулам-переносчикам, НАД и ФАД. Эти молекулы повторно окисляются в дыхательной цепи, где происходит дальнейшее запасание энергии путем синтеза новых молекул АТФ, а атомы водорода используются для восстановления О2 в Н2О. [c.338]


    Управляя скоростью такой реакции, можно создать фантастические запасы энергии. В качестве топлива пригоден дейтерий, или тяжелый водород, который в огромных количествах (вполне достаточных на миллионы лег) имеется в воде океанов. [c.179]

    Этим условиям при кислородном, и особенно при воздушном, т. е. низкотемпературном горении лучше всего удовлетворяют топлива органического происхождения, основными горючими элементами которых являются углерод и водород. Запасы таких топлив [c.121]

    В заключение отметим возможные новые направления использования водорода в далекой перспективе. Постепенное сокращение запасов органического горючего, а также загрязнение окружающей среды выдвигает необходимость перехода на новый вид энергоносителя — водород, запасы которого практически неограниченны, а вредные выбросы при его сжигании минимальны. Этому способствует также развитие атомной энергетики. Переход будет осуществляться в несколько этапов, первый из которых — использование твердого топлива. Возможно получит применение и процесс электролиза в комбинации с атомными электростанциями, однако термохимические процессы получения водорода будут более перспективными. [c.264]

    Парусные суда заинтересовали и специалистов по возобновляемым ресурсам энергии. В одном из патентов США описывается, например, энергетическая установка, выполненная в виде судна-катамарана, приводимого в движение треугольным парусом, удерживаемым на высоте аэростатом. Движение судна вызывает вращение винта, размещенного ниже ватерлинии, и действие электрогенератора. Нагрузкой генератора предлагается сделать электролизер, разлагающий воду на водород и кислород, причем водород запасается на борту судна в виде гидридов — соединений с металлами —и хранится в контейнерах. Часть водорода можно использовать в случае необходимости в качестве топлива в резервной энергетической установке .  [c.93]

    В организмах животных в виде жиров сохраняется запас энергии. Молекула жира может дать вдвое больше энергии, чем молекула крахмала такого же размера. Объясняется это тем, что в молекуле жира все атомы водорода присоединены к атомам углерода. Процесс выработки энергии в организме состоит в том, что связи между водородом и углеродом разрываются, и атомы водорода соединяются с кислородом. В молекуле же крахмала почти половина атомов водорода уже соединена с атомами кислорода, и из этой связи никакой энергии извлечь нельзя. (Правда, крахмал перерабатывается организмом легче, чем жиры, так что и у него есть свои преимущества.) [c.198]

    Но мы пойдем еще дальше, туда, где вода появляется в первый раз. Геологи говорят, что общие мировые запасы воды остаются неизменными в течение миллиардов лет. Большинство ученых полагают, что вся имеющаяся на нашей планете вода образовалась из водорода и кислорода в те времена, когда Земля была покрыта расплавленными скальными породами. С тех пор эта вода совершает непрерывный круговорот по планете. [c.27]


    Основное преимущество водорода — безвредность для окружающей среды с экологической точки зрения. Углеводороды при сжигании генерируют двуокись углерода, водяные пары и азот,, а водород — соответственно лишь воду и азот, причем первая, быстро конденсируясь, восполняет земные запасы воды, которая, в свою очередь, может служить сырьевым источником для дальнейшего производства водорода посредством электролиза или любым другим способом диссоциации. [c.233]

    В заключение следует заметить, что аппаратурное оформление процесса гидрогеиолиза должно позволять варьировать его параметры в сравнительно широких пределах температуру в реакторах— за счет создания запаса поверхностей нагрева, время контакта — путем применения дозировочных насосов с регулируемой производительностью, модуль водорода — созданием запасов мощности компрессора и поверхностей подогревателей водорода и т. д. В этом случае оптимизация процесса гидрогеиолиза не представит особых трудностей, и задачу можно переложить на управляющую вычислительную машину (при условии разработки надежного математического описания промышленного процесса). [c.142]

    Источником получения кислорода и азота, а также большинства инертных газов (кроме гелия) является атмосферный воздух, запасы которого практически неисчерпаемы и составляют 5,1 -10 т. Состав воздуха, за исключением оксида углерода (IV) и паров воды, постоянен. Воздух содержит (по объему) азота 79,09%, кислорода 20,95%, аргона 0,93%, а также незначительные количества неона, криптона, ксенона, гелия (1,6-10 — 8-10 %) и водорода (5-10 %). Содержание оксида углерода (IV) изменяется в зависимости от близости к населенным пунктам и промышленным предприятиям и составляет, в среднем, [c.229]

    В аппаратах с кипящим слоем проводят и другие каталитические реакции — окисление этилена на серебряном катализаторе, получение алкилхлоридов на медном катализаторе, получение ви-нилацетата. Вследствие истощения запасов углеводородного сырья перспективен синтез бензина из водорода и моноксида углерода [c.293]

    Регенерация осушающего агента и адсорбента проводится периодически. Подогрев силикагеля и активированного угля при регенерации достигает 100 °С газообразные продукты из осушителя и адсорбера откачивают насосом 18. Запас очищенного водорода хранится в ресиверах (баллонах) 14, куда он закачивается компрессором 2 [102, 103]. [c.72]

    Сухие газгольдеры используются для хранения запаса водорода на вновь строящихся предприятиях. Существуют проекты сухих газгольдеров водорода объемом 100 и 160 на давление 6 МПа. [c.271]

    Получаемый на электролизной установке или разрядкой баллонов пусковой водород накапливается в специальных газгольдерах, поскольку для единовременного пуска установки риформинга необходимо до 40 тыс. м водорода. В эти же газгольдеры направляют часть водорода, вырабатываемого установками риформинга в межрегенерационный период.с тем, чтобы со дать необходимый запас для последующего пуска установок риформинга. Для хранения водорода могут использоваться мокрые и сухие газгольдеры. При проектировании современных предприятий рекомендуется применять сухие газгольдеры на давление 6 МПа. [c.146]

    Для обеспечения приемлемого запаса хода (не менео 300 км) водород используют в жидком виде, при этом он подается в дизель специальным насосом высокого давления. Хранят водород в криогенном баке с заправочной емкостью по водороду 82 дм . Бак массой 35 кг изготовлен из легированной стали, оборудован вакуумно-порошковой изоляцией. В связи с низкой температурой жидкого водорода в топливном насосе высокого давления дизеля использованы специальные материалы. В частности, гильза изготовлена из легированной стали, а рабочая поверхность плунжера имеет полиамидное покрытие. Недостатки данной конструкции водородного автомобиля— сложность заправки криогенным компонентом, низ- [c.178]

    Водород является удобным энергоносителем, что послужило основой создания атомно-водородной энергетики. Избыточная энергия, вырабатываемая атомной электростанцией, может быть запасена в виде водорода, получаемого, например, электролизом воды. Хранение водорода в больших масштабах в виде газа неудобно, поэтому разрабатываются методы хранения и транспортировки водорода в компактном виде. В перспективе предусматривается получение металлического твердого водорода при сверхвысоких давлениях. Уже сейчас для хранения и транспортировки водорода в скрытой форме используются твердые и жидкие гидриды. Особый интерес представляют процессы гидрирования ароматических углеводородов. Так, при гидрировании бензола водород связывается с образованием циклогексана  [c.100]

    При сооружении емкостей высокого давления, предназначенных для хранения СНГ, используют высокопрочные пластичные стали. В США к ним относятся стали марки Тип-1 , Тип-1-А , Тип-1-В и т.д. Прочность таких сталей на растяжение (разрыв) составляет около 82,74 МПа, что существенно превышает этот показатель у сталей обычных марок (44,8—48,3 МПа), применяемых в США и Великобритании. Предел прочности высокопрочных пластичных сталей также выше, что с учетом соответствующих коэффициентов запаса прочности дает возможность использовать этот показатель для расчета толщины стенок емкостей. Применение таких сталей позволяет сооружать емкости с меньшей толщиной стенок, а следовательно, более дешевые. К сожалению, стали данных марок обладают рядом недостатков с точки зрения требований, предъявляемых к сооружению емкостей для хранения СНГ. Поскольку они подвергаются закалке с последующим отпуском, необходимы особые режимы сварки для исключения насыщения водородом сварного шва и обязательная термообработка последнего по окончании сварки для снятия остаточного напряжения и предотвращения растрескивания шва. Эти меры предосторожности должны особо тщательно соблюдаться при сооружении емкостей, предназначенных для хранения и транспортировки аммиака. По перечисленным выше причинам некоторые европейские органы надзора отказываются от применения сталей марок Тип-1 , Тип-1-А для сооружения емкостей под СНГ, поскольку последние очень часто используются для хранения аммиака. [c.135]


    Таким образом, исследованные КСФ воздействуют на механизм перенапряжения водорода, приводя к инверсии стадий замедленной рекомбинации и разряда, что способствует снижению окклюзии водорода и сохранению запаса пластичности стали. [c.273]

    После этого небольшого вступления - сами опьггы. Вам понадобятся капустная кочерыжка, яблоко, клубень картофеля с ростками, луковица с корешками, проросшая в темноте. Реактивами будут служить холодная кипяченая, а еще лучше дистиллированная вода, гидрохинон (из магазина фототоваров) и аптечная перекись водорода. Запаситесь также теркой для овощей, водяной баней, пробирками или флакончиками из-под пенициллина, чистыми пипетками и марлей либо белой тканью. [c.144]

    Производство хлора — важнейшая и быстро развивающаяся отрасль химической иромышленности. Высокие темпы роста выработки электроэнергии являются падежной основой дальнейгиего расширения электрохимического производства хлора и сопутствующих ему каустика и водорода. Запасы сырья для этого производства, поваренной соли, неисчерпаемы. Сейчас во всем мире добывается свыше 100 млн. т хлористого натрия, п 70% этого количества используется для промышленных нужд. Поваренную соль добывают из соляных озер, имеющихся во многпх местах земного шара, из подземных рассолов, из мощных пластов каменной соли, залегающих в недрах земли. Пенсчернае-мые запасы солей, из которых 70% приходится на долю поваренной солп, содержатся в воде морей и океанов — около 48 млн. км Представим себе эту соль, рассыпанную равномерно но всей поверхности суши,— получится слой толщиной в 320 м. Если бы удалось испарить воду, то дно океанов было бы покрыто слоем солей толщиной 133 м. [c.53]

    По технико-экономическим показателям устройства на гидридах оказываются значительно эффективнее традиционных, в которых водород запасается в жидкой или газообразной фазах В книге А. Н. Подгорного и других приведен пример, позволяющий сравнить гидридный аккумулятор со стандартным газовым баллоном, рассчитанным на хранение 500 г водорода. Такой баллон при полезном объеме до 45 л имеет массу около 80 кг, соответствующий же контейнер с гидридом массой не более 50 ki имеет объем всего 14 л. Заряжается такой аккумулятор при низких давлениях и не требует ни компрессоров высокого давления яи толстостенных либо теплоизолированных, как в случае хранения жидкого водорода, сосудов. Упрощаются, таким образом, заправка, транспортировка, хранение (хранение жидкого водородг требует специальной холодильной техники), повышаются взрыво-и пожаробезопасность. Очень интересное свойство гидридного ак кумулятора — его избирательность, позволяющая не только из влекать водород из смесей с другими газами, но и очищать егс от посторонних примесей. Это особенно важно при дальнейшем использовании водорода для производства белка. Затраты энер ГИИ в цикле хранения водорода в гидридных аккумуляторах примерно сравнимы с газобаллонным методом и в 4—5 раз ниже, чем при сжижении. Они составляют 1,8—2,2 кВт-ч/кг водорода. Нг основе использования гидридных систем сейчас разрабатываютс5 самые различные устройства от двигателей внутреннего ropanns до холодильных машин. [c.259]

    Причем роль катализатора выполняет металл электрода. Кобозев предположил, что в силу специфики электрохимического процесса, при котором адсорбированные атомы водорода высаживают принудительно током на любых точках к.атода (в том числе и на участках с малой теплотой адсорбции), наряду с образованием обычных молекул в продуктах электролиза возможно доявление колебательно возбужденных молекул водорода Н2 1 избыточным запасом энергии  [c.404]

    При атоме С-1 оба атома водорода эквивалент ны, чего нет ни в одной из форм циклогексана. По суммарному запасу энергии Н атомы циклогептана располагаются в следующий ряд 2е Зе 4г < < 1 < 4а <2а За. Эта неравноценность создает дополнительную сложность в конформационных взаимодействиях у моно- и, особенно, у ди- и полизамещенных циклогептанав. [c.44]

    Подобная мысль высказывается в работах Норриша [14] и Чемберлена и Уолша [8] последние два автора также предполагают существование нестойкого обладающего бол >шпм запасом энергии радикала HjOO. Ралс й, Портер, Раст и Фоген [17] делают предположение, что СН,00 является важным промен<уточным продуктом, последующие реакции которого заключаются в отщеплении водорода или распаде  [c.270]

    В очень большом яш,ике А (рис. VIII, 1), помещенном в термостат с постоянной температурой Г, находится равновесная смесь водорода, азота и аммиака с парциальными давлениями р , p Ящик имеет три отверстия, закрытые отодвигающимися заслонками и, кроме того, перегородками (отмечены пунктиром), каждая из которых проницаема для одного из газов и непроницаема для других. В отдельных, очень больших резервуарах Б , B , S,, также термостатированных. имеются запасы чистых водорода, азота и аммиака при произвольно выбранных давлениях Р и Р . К отверстиям в этих резервуарах. а также к отверстиям в ящике А, снабженным заслонками, могут присоединяться цилиндры с поршнями и заслонками. [c.266]

    Куда переходят в конце концов атомы водорода, образуюидаеся в цикле лимонной кислоты Как происходит запасание энергии в этом процессе Сколько энергии запасается в расчете на каждые 2 моля атомов водорода  [c.344]

    Запасы карбонатов в земной коре на несколько порядков выше, чем органического топлива, и возобновляются диоксид углерода является отходом современной технологии и утилизируется лишь в небольшой степени. Рассмотрим поэтому термодинамическую вероятность и энергетическую эффективность синтезов органических соединений на основе СО2 или карбонатов с привлечением в синтез водорода, водяного пара, угля. На целесообразность таких синтезов обращено внимание в работах Я. М. Паукина, поско. ьку, ввиду доступности сырья, они могут быть осуществлены в крупнотоннажных производствах. С этой целью определены при низких (300 К) и высоких (1000 К) температурах теплоты АЯ° и константы равновесия реакций получения из СО2 кислоты (НСООН), спирта (СН3ОН), углеводорода (СН4) по следующим вариантам  [c.346]

    Собственные массы ГБА превышают массы базовых моделей на 200-400 кг, а запас составляет 400-500 км. В 1990 г. в стране количество эксплуатируемых газобаллонных автомобилей достигло 320 тыс.ед. Темпы перевода части автомобильного парка страны на газовое топливо сдерживаются ограниченными возможностями по заправке ГБА. В перспективе предусматривается ускоренное строительство в ряде экономических районов страны газонаполнительных станций. В качестве перспективного альтернативного источника моторного топлива рассматривается и жидкий водород. Он имеет в 2,8 раза высокую теплотворную способность в сравнении с авиационным керосином, что делает водород особенно привлекательным для гипер-звуковой авиации будущего. Запасы водорода практически неограни-чены. Водородное топливо не загрязняет окружающую среду. Но высокая стоимость водорода и трудности, связанные с заправкой и хранением, пока препятствуют его широкому практическому использованию. [c.215]

    Однако вполне возможны случаи, когда по условиям температуры, расстояния от атомной станции и, возможно, потребности накопления некоторых запасов энергии, транспортировка по трубопроводу окиси углерода и водорода удаленным электропотребителям будут вполне целесообразны, особенно в тех случаях, когда уменьшение запасов и высокие цены на чистое ископаемое топливо позволят улучшить относительную экономику использования атомной энергии. [c.230]

    По мере постепенного истошения запасов природного газа, жидких нефтепродуктов и угля неизбежно встанет вопрос о необходимости в конечном счете заменить природный газ неископаемым топливом. В один прекрасный день природный газ и нефть исчезнут, а уголь станет слишком дорогим для того, чтобы конвертировать его в газ, поэтому единственным видом газообразного топлива, который в большом количестве будет производиться человечеством за счет оставшихся в мире источников энергии, явится водород [ 10]. [c.230]

    Водород считают универсальным энергоносителем, который может служить передатчиком энергии от ядерного реактора разнообразным потребителям в тех случаях, когда невозможно непосредственное использование энергии ядерного топлива. Основные преимущества водорода как экологического топлива и энергоносителя следующие 1) отсутствие золы, ЗОг, СОг, СО и других загрязнителей атмосферы в продуктах сгорания 2) источником водорода может служить вода — дешевое серье, запасы которого неисчерпаемы и возобновляемы, так как при сгорании водород вновь превращается в воду 3) теплота сгорания молекулярного водорода, составляющая 125 510 кДж/кг, почти в четыре раза выше, чем угле- [c.71]

    Особый интерес к жидкому водороду стал проявляться в связи с перспективами его использования как ракетного горючего [7]. Великий русский ученый Константин Эдуардович Циолковский еще в 1903 г. указывал, что топливо, состоящее из жидкого водорода и жидкого кислорода, является одним из наиболее эффективных топлив для ракетных двигателей. Водородные жидкостные ракетные двигатели имеют высокую удельную тягу. Чем больше удельная тяга двигателя, тем меньше расходуется топлива для создания необходимой тяги, а следовательно, тем меньше должен быть запас топлива в ракете, т. е. начальная масса ракеты-носигеля [8]. Такие топлива, как жидкий водород — жидкий фтор, жидкий водород — жидкий кислород, являются наиболее энергетически выгодными среди жидких ракетных топлив. В табл. 1 приведены значения удельной тяги для некоторых жидких ракетных топлив. [c.6]

    Энтальпии компонентов пелесообрагию отсчитывать от определенного стандартного состояния, которое принимается аа нулевой уровень. При этом в величину энтальпии включается запас химической. энергии, определяемый тепловыми эффектами реакции перехода к нулевому уровню. При соответствующем выборе стандартного нулевого состояния значения энтальпий всех компонентов однозначны. Будем принимать за нуль аитальпии газообразных водорода, воды и (гнертиых газов ( Si.,, Аг и т. д.) и твердого углерода при О К. Значения энтальпий ряда компонеитов продуктов сгорания горючих газов при указанной системе отсчета приведены в Приложении 3. [c.113]

    Из табл. 2 видно, что пефть зиа-чительпо богаче водородом следовательно, выход углеводородов из нефти выше. Таким образом нефть является более це 1иым сырьем для химической переработки, п в связи с ограничеииымн запасами нефти большое значе пие приобретает исследование путей наиболее рациональной переработки нефти- [c.4]

    Использование природного газа. Стоимость кокса составляет до 50% себестоимости выплавляемого чугуна, к тому же запасы коксующихся углей ограничены. Замена части кокса прщюдным газом обогащает газовую фазу восстановителями, в том числе, водородом, снижает температуру в горне при использовании обогащенного кислородом дутья,повышает удельный вес процессов косвенного восстановления оксидов железа и уменьшает количество образующейся золы и, следовательно, [c.72]

    В настоящее время ведутся работы по использованию водорода как топлива для двигателей внутреннего сгорания с целью снижения токсичности выхлопных газов. Фирма "Даймлер Бенц" разработала проект городского автобуса с запасом водорода в гидридах металлов на 400 км пробега. В Канаде намечается пустить трансконтинентальный экспресс на водородном топливе. [c.7]

    В настоящее время около вО% водорода (включая синтез - газы) получают паровой конверсией природного газа и нафты. Но сокращение мировых запасов нефти, и газа и дифшщт их в ряде стран вынуждают использовать твердое топливо. [c.12]

    При потенциалах ниже —1,1 В соответствует именно водородаому растрескиванию [58]. К тому же при повышенной температуре стали разрушаются от КРН в воде быстрее, чем при комнатной при водородном растрескивании (катодная поляризация), напротив, время до разрушения снижается по мере повышения температуры. Механическая обработка высокопрочных сталей повышает устойчивость к КРН (критический потенциал становится положительнее потенциала коррозии), тогда как устойчивость к водородному растрескиванию падает. Следовательно, на практике важно иметь в виду, что тросы мостов, изготовленные из высокопрочной стали, должны пройти холодную обработку, чтобы уменьшить опасность растрескивания во влажном воздухе. Без такой обработки тросы разрушаются преждевременно несмотря на достаточный запас прочности, как это имело место в США и других странах. Более того, обезуглероженная с поверхности высокопрочная сталь (т. е. с более мягкой поверхностью) не разрушается в кипящей воде или в 3 % растворе Na l, но быстро растрескивается при катодной поляризации. Назначительное количество водорода, образованного в результате реакции железа с водой, не оказывает влияния на твердые подповерхностные слои стали. Адсорбированная вода в большей степени, чем растворенный в решетке водород, является причиной растрескивания высокопрочных сталей и, возможно, высокопрочных мартенситных и дисперсионнотвердеющих нержавеющих сталей, алюминиевых, магниевых и титановых сплавов, а также - и -латуней — все они склонны к разрушению в присутствии влаги. [c.152]

    Синтезы на основе оксидов углерода и водорода дают возможность по-хучать широкую гамму продуктов углеводороды, спирты, карбоновые кис-юты, сложные эфиры, альдегиды, кетоны. Потребность народного хозяйства ) этих продуктах исчисляется сотнями тысяч и миллионами тонн в год. В вязи с ограниченностью мировых запасов нефти эти синтезы в последние ОДЫ приобретают все более важное значение. [c.105]


Смотреть страницы где упоминается термин Водород запасы: [c.71]    [c.111]    [c.7]    [c.4]    [c.50]    [c.221]    [c.19]    [c.61]    [c.65]    [c.196]   
Водород свойства, получение, хранение, транспортирование, применение (1989) -- [ c.42 ]




ПОИСК







© 2025 chem21.info Реклама на сайте