Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Альдегиды из карбоновых кислот или их ангидридов

    Многие кетоны, альдегиды, карбоновые кислоты, ангидриды, эфиры, амины, амиды, нитрилы, нитросоединения, сульфоксиды, сульфоны, а также некоторые этиленовые и ароматические углеводороды легко превращаются в сопряженные им кислоты В тех случаях, когда происходит неполная ионизация, относительная основность определялась методами криоскопии, электропроводности и спектроскопии. Полученные результаты представлены в табл. 30. [c.177]


    Фотохимические данные, полученные для соединений, содержащих карбонильную группу С = 0, обширнее, чем любого другого класса органических соединений. Для краткости мы в основном ограничимся рассмотрением фотохимии альдегидов и кетонов, так как для карбоновых кислот, ангидридов кислот, сложных эфиров и даже амидов имеют место аналогичные реакции фотодиссоциации. [c.66]

    Группа 1Г Вещества, на свойства которых преобладающее влияние оказыва-ют неполярные остатки углеводороды н их галогенпроизводные, простые и сложные эфиры, спирты более чем с пятью С-атомами, высшие альдегиды и кетоны высшие оксимы, средние и высшие карбоновые кислоты, ароматические карбоновые кислоты, ангидриды кислот, лактоны, высшие нитрилы и ам.иды кислот, фенолы, тиофенолы, высшие амнны, хиноны, азосоединения. [c.296]

    Поглощение излучения, обусловленное колебаниями связи С = 0 в органических соединениях, соответствует длинам волн от 5,45 до 6,5 мкм. Однако оно характерно не только для группы С = 0 альдегидов и кетонов, но также и для группы С = 0 карбоновых кислот, ангидридов, эфиров и амидов. В спектрах каждого из этих типов соединений имеется характерная полоса поглощения, однако эти полосы часто накладываются друг на друга. [c.89]

    Карбонильную группу содержат кетоны, альдегиды, карбоновые кислоты, сложные эфиры, амиды, ангидриды кислот и другие соединения. Она характеризуется интенсивной полосой поглощения валентного колебания связи С=0 с частотой, лежащей в довольно широком интервале 1850-1550 см . Точное значение частоты колебания определяется атомами, присоединенными к группе С=0. Электронодонорные заместители уменьшают степень двоесвязности карбонильной связи, что приводит к уменьшению частоты (I), электроноакцепторные, напротив, увеличивают ее (П) [c.447]

    II. Ко второй группе относятся вещества, на физические свойства которых наибольшее влияние оказывает неполярная часть молекулы. Это — углеводороды, галогенпроизводные углеводородов, простые и сложные эфиры, спирты (содержащие более 5 атомов углерода), высшие кетоны и альдегиды, высшие оксимы, высшие и средние карбоновые кислоты, ароматические карбоновые кислоты, ангидриды кислот, лактоны, высшие нитрилы и амиды кислот, фенолы, тиофенолы, высшие амины, хиноны, азопроизводные. [c.570]

    Целевыми продуктами в разных случаях являются гидропе-роксиды, спирты, альдегиды, карбоновые кислоты и их ангидриды. [c.344]


    К соединениям, которые обычно восстанавливаются боргидридами, относятся альдегиды, кетоны, ацилхлориды, лактоны, гидроперекиси, сульфоксиды и др. К соединениям, которые, как правило, не восстанавливаются относятся карбоновые кислоты, ангидриды, сложные эфиры, амиды, имиды, ацетали, нитрилы, ароматические нитросоединения, галогениды. Не восстанавливается также двойная связь. [c.470]

    Кислородсодержащие органические соединения — спирты, альдегиды, кетоны, карбоновые кислоты, ангидриды, простые и сложные эфиры, а-оксиды, фенолы и хиноны — при хлоролизе в дополнение к U и НС1 дают фосген и небольшие количества диоксида углерода. Последний в сжиженном хлоре частично превращается в фосген. Кислород и вода, содержащиеся в сырье, количественно превращаются в фосген и диоксид углерода. В принципе для хлоролиза могут использоваться все углеводороды и их хлорированные производные, удовлетворяющие следующим требованиям. [c.136]

    Валентные колебания карбонильной группы С=0, характерные дл таких соединений, как кетоны, альдегиды, карбоновые кислоты, их ангидриды, сложные эфиры, лактоны, дают сильную полосу поглощения в области 1870—1540 см- (для насыщенных алифатических кетонов в отсутствие растворителя эта полоса находится при 1715 см- ). В неполярных раство- [c.197]

    Большая ценность соединений, получаемых окислением (спиртов, альдегидов, кетонов, карбоновых кислот и нх ангидридов, а-оксидов, нитрилов н др.) и являющихся промежуточными продуктами органического синтеза, растворителями, мономерами н исходными веществами для производства полимерных материалов, пластификаторов и т. д. [c.351]

    Кроме надкислоты и карбоновой кислоты, другим продуктом окисления альдегидов являются ангидриды. Их образованию благоприятствуют применение смешанного катализатора (соли Со или Мп с солями Си) и пониженное парциальное давление кислорода. Один и 1 возможных механизмов образования ангидридов состоит в превращениях ацильного радикала в координационной сфере атома меди  [c.361]

    Совместный синтез уксусной кислоты и уксусного ангидрида. Ранее уже говорилось, что в определенных условиях при окислении альдегида параллельно с карбоновой кислотой образуется ангидрид  [c.406]

    Имеются указания [44, 54,60] и на другие кислородные соединения (карбоновые кислоты, альдегиды, кетоны, ангидриды сложные эфиры), встречающиеся в растительных веществах и содержащие в молекуле одно или несколько пента- или гексаметиленовых колец, которые могли послужить исходным материалом для образования нафтеновых кислот и нафтеновых (циклопарафиновых) углеводородов, близких к ним но строению углеводородного скелета. [c.326]

    Конденсация альдегидов с натриевыми солями карбоновых кислот под влиянием ангидридов кислот. Этот синтез, известный под на- [c.254]

    Реакцию проводят в жестких условиях, что исключает возможность выделения продуктов альдольного присоединения. В данном случае метиленовым компонентом является ангидрид карбоновой кислоты. Его СН-кислотность несколько выше кислотности самой кислоты и сложного эфира, однако уступает кетону, а тем более альдегиду. Карбонильным компонентом в реакции Перкина могут быть бензальдегид и его производные, имеющие различные заместители в ароматическом кольце. Электроноакцепторные группы благоприятствуют протеканию реакции, а электронодонорные — замедляют диметиламинобензальдегид вообще не вступает в реакцию Перкина. [c.225]

    В альдегидах и кетонах, а также карбоновых кислотах н их производных (ангидридах, галогенангидридах, амидах и др.) возможны три типа электронных переходов я - я, п - я и а. Однако наиболее характерным является поглощение, отвечающее переходу п - я. Обычно эта полоса поглощения находится в наиболее длинноволновой части спектра, так как переходу п -> я соответствует наименьшая энергия. Например, для альдегидов н кетонов она лежит в области 270—300 нм, для кислот, галогенангидридов, сложных эфиров и амидов — в области 200—230 нм. Характерной особенностью полос поглощения, вызванных п - я -переходами, является их низкая интенсивность (е = 10—50) и способность смещаться в коротковолновую область при увеличении полярности растворителя. Эту полосу легко индентифицировать при добавлении кислоты к раствору она исчезает, так как происходит связывание неподеленной пары электронов гетероатома ( -электронов) протоном. [c.134]

    Альдегиды, эпоксиды Ароматические амиды Лактоны, ангидриды карбоновых кислот Тиофенолы, серосодержащие гетероциклы Диметиламиды, этиламиды [c.326]

    Восстановление карбоновых кислот, их сложных эфиров и ангидридов до альдегидов. [c.184]

    Ангидриды кислот присоединяются к ароматическим альдегидам в присутствии оснований, давая а, р-ненасыщенные кислоты. Эта реакция известна под названием конденсации Перкина она родственна альдольной конденсации. В качестве основания в этой реакции чаще всего используют натриевую соль карбоновой кислоты, ангидрид которой является реагентом. Конденсация Перкина применима лишь для ароматических альдегидов, поскольку они неспособны подвергаться самоконденсации (по альдольному типу) в-. присутствии основных катализаторов. [c.825]


    Фосфиты и амидофосфиты. Реакция триэтилфосфита с простейшим а,р-непредельным альдегидом — акролеином — в мягких условиях приводит к образованию 2,2,2-триэтокси-А -оксафосфолена , который реагирует с водой, спиртами, карбоновыми кислотами, ангидридами . Высказанное ранее предположение о возможности [c.36]

    Каталитическое окисление кислородом воздуха имеет важное значение для получения малеинового ангидрида (2) из бен-, зола (1) и фталевого ангидрида (4) из нафталина (3) [1152]/ В производстве малеинового ангидрида пары бензола в смеси с воздухом пропускают через трубки контактного аппарата со стационарным слоем катализатора (пентаоксид ванадия с оксидом, молибдена или вольфрама и, Модифицирующими добавками), поддерживая температуру 350—400 °С охлаждающей солевой баней. Выход малеинового ангидр тида составляет ь 70— 80°/о около 20% бензола окисляется до СО2, побочно образуются небольшие количества фенолов, альдегидов, карбоновых кислот. Большая часть производств малеинового, ангидрида [c.507]

    Парофазное окисление метилбензолов имеет иной механизм,, связанный с превращениями боковых метильных групп на поверхности катализатора. Процесс протекает, по-види.мому, через стадии образования альдегидов, карбоновых кислот, альдегидо-кислот и т. д. Реакции декарбонилирования и декарбоксилирова-ния этих веществ обусловливают снижение выхода целевого продукта по сравнению с окислением нафталина (50—70%-ный выход фталевого ангидрида из о-ксилола, 80—88%-ный — из нафталина). [c.601]

    Продукты этой отрасли промышленностн отличаются большим много( бразием строения, свойств и областей применения. Это различные углеводороды, хлор- и фторпроизводные, спирты и фенолы, простые эфиры, альдегиды и кетоны, карбоновые кислоты и их прсизводные (сложные эфиры, ангидриды, нитрилы и др.), амины и нитросоединения, вещества, содержащие серу и фосфор, и т. д. По назначению все они подразделяются на две группы ]) промежуточные продукты для синтеза других веществ в этой же илн в других отраслях органической технологии 2) продукты целевого применения в разных отраслях народного хозяйства. [c.9]

    П фаллельное образование веществ с разными функциональными группами (например, образование спиртов и кетонов из углеводородов, карбоновых кислот и ангидридов из альдегидов) нередко можно регулировать, подбирая соответствующие параметры процесса. Так, относительный выход спиртов и кетонов определяется элементарными стадиями [c.365]

    В классических синтетических реакциях этого круга разделение ролей достигалось одним приемом использованием резко различных по способности к ионизации субстратол. Именно этим определяется индивидуальное лин,о названных выше именных реакций, т. е. области их применения и характерные типы субстратов. Скажем, в реакции Иеркина — конденсации ароматических альдегидов с ангидридами алифатических карбоновых кислот — игра построена па том, что в электрофильной компоненте — альдегиде — не содержится а-водородных атомов, что лнншет его возможности образовывать еноляты. В результате реакция проходит однозначно и приводит к продуктам тииа эфиров коричной кислоты, например  [c.87]

    Методом некаталитического окисления спиртов с помощью хромовой смеси, азотной кислоты, хромового ангидрида, персульфатов и т. д. получали альдегиды, кетоны и карбоновые кислоты. Уже в 1819 г. было установлено, что при неполном сгорании спирта в спиртовых лампочках образуется ламповая кислота , содержащая уксусную кислоту и некое от эфира отличное вещество , которое известно теперь как ацетальдегид. Ацетальдегид был получен каталитическим. Ван-Марумом при пропускании паров этилового спирта над накаленными металлами ( обуглероженный водород ). [c.202]

    Окисление широко используется для получения карбоновых кислот, альдегидов, кетонов, а-оксидов, хинонов, N-оксидов третичных аминов и ряда других классов органических соединений. Имеется большой набор окислителей, различающихся по окислительному потенциалу, специфичности действия. В качестве окислителей широко используются кислород, перманганат калия, хромовый ангидрид, хромовая смесь, азотная кислота, диоксид свинца, тетраацетат свинца, диоксид селена, пероксид водорода, надкисло-ты, хлорид железа (П1). Окисление кислородом рассмотрено в разделах Радикальное замещение и Гомогенный и гетерогенный катализ . [c.199]

    Енолизующиеся р-дикетоны не реагируют. а-Дикетоны можно превратить в ангидриды. В альдегидах мигрирует атом водорода и образуется карбоновая кислота. Реакция 14-6 (т. 3) идет по этому пути. Миграция других групп будет приводить к формиатам [272] (см. реакцию Дакина 19-12). [c.165]

    В классических вариантах конденсации карбонильных производных разделение ролей достигалось с помощью общего приема, а именно использованием в качестве субстратов реакции соединений, резко отличающихся по своей способности к енолизации. Действительно, по указанному признаку, т. е. по природе субстратов и соответственно области применения, более всего отличаются друг от друга названные выше именные реакции. Скажем, в реакции Перкина — конденсации ароматических альдегидов с ангидридами алифатических карбоновых кислот — игра построена на том, что в элект-рофильном компоненте (альдегиде) не содержится а-водородов, что вообще лшпает его способности образовывать еноляты. В то же время во второй компоненте, используемой как источник нуклеофила (енолята), такой, как, например, уксусный ангидрид, сильно понижена (в сравнении с альдегидом) реакционноспособность карбонильной функции по отношению к [c.106]

    По методу, предложенному Филдом (1955), альдегиды готовят путем восстановления алюмогидридом лития хлорангидридов или метиловых эфиров карбоновых кислот до бензилового спирта. Последний окисляют двуокисью азота N264 в хлороформе при 0°С. Зеленая окраска, характерная для азотистого ангидрида, постепенно углубляется. Из этого следует, что окисление является, по-видимому, результатом гомолитической атаки радикалом -N02 а-углеродного атома с образованием соответствующего нитроспирта, который, разлагаясь, превращается в бензальдегид  [c.380]

    Диэтиловый эфир малоновой кислоты также конденсируется с альдегидами в присутствии аминов или уксусного ангидрида. В результате реакции одного моля алифатического альдегида с двумя молями малонового эфира в присутствии амина в качестве конденсирующего средства образуются главным образом ненасыщенные эфиры тетра карбоновых кислот [c.596]

    Этот реактив, отличающийся высокой избирательностью, приготовляют, добавляя хромовый ангидрид (СгОд) к избытку третичного бутилового спирта. Полученный кристаллический осадок оранжевого цвета, растворяют в неполярном органическом растворителе и сушат над сульфатом натрия . Раствор этого реактива в избытке трет-бутанола количественно окисляет первичные спирты в альдегиды, причем не нарушаются кратные связи исключение составляют этиленовые связи в а, -ненасыщен-ных спиртах. Добавление ангидридов карбоновых кислот к раствору /прет-бутилхромата усиливает его окислительную способность. Первичные спирты окисляются настолько быстро, что происходит взрыв метиленовые группы, находящиеся в а-положении к двойным связям, окисляются [c.668]


Смотреть страницы где упоминается термин Альдегиды из карбоновых кислот или их ангидридов: [c.258]    [c.20]    [c.60]    [c.252]    [c.366]    [c.244]    [c.50]    [c.51]    [c.229]    [c.355]    [c.214]   
Органические синтезы. Т.2 (1973) -- [ c.2 , c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Ангидриды карбоновых кислот из карбоновых кислот

Карбоновые ангидриды

Карбоновые кислоты ангидриды

Карбоновые кислоты ангидриды Ангидриды кислот



© 2024 chem21.info Реклама на сайте