Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись азота реакция горения

    Окись азота, которая образуется за счет связывания азота при горении, также присутствует в небольших количествах в выхлопном газе [11, 12]. Наличие несгоревшего остатка можно объяснить возможностью реакции окиси углерода с водой по уравнению [c.389]

    В качестве модельной цепной реакции с неразветвленными цепями используется реакция с хорошо изученной кинетикой взаимодействие хлора с водородом [34, 35]. Сложные реакции экзотермического распада озона [36] и ацетилена [37] имеют в определенном диапазоне условий формальную кинетику, близкую к бимолекулярной. Окись азота, как эндотермическое соединение, способна распадаться с выделением тепла, и этот процесс в определенных условиях может протекать по типу горения. При этом [c.274]


    Давид Альбертович в составе большого коллектива принял участие в работе по проблеме окисления и фиксации атмосферного азота при горении и взрывах. Упоминания об этой проблеме, например у Кавендиша, появились сразу после открытия азота и вслед за тем, как был установлен состав воздуха. К исследованию этого процесса обращались такие крупные химики, как Ф. Габер, В. Нернст (Германия), Р. Бон (Англия). В связи с развитием теории цепных реакций вставал вопрос о возможности прямого использования энергии горения для превращения азота в окись азота. Исследования, проведенные при участии Давида Альбертовича, показали, что процесс связан с механизмом цепной реакции при участии атомов N и О, однако при этом выход окислов азота ограничен условиями термодинамического равновесия. Вполне естественно наметились направления последующей работы Давида Альбертовича с одной стороны — теория горения и взрыва, с другой — общие основы химической технологии. К этим вопросам Давид Альбертович был близок и по своему инженерному образованию и опыту. [c.496]

    Желтая дуга — это пламя азота, соединяющегося с кислородом в окись азота. Так как реакция сгорания азота происходит с поглощением тепла, горение азота происходит лишь в зоне электрической искры и мгновенно прекращается, как только выключается ток. [c.441]

    Вследствие обратимости последних двух стадий содержащаяся в газе окись углерода (и углерод кокса) не может быть использована полностью, и поэтому выделяющийся из домны доменный (колошниковый) газ содержит, помимо азота воздуха и двуокиси углерода, 27—30% окиси углерода, а также небольшие количества водорода и метана. Повышение давления газов в печи, а вследствие этого и их концентраций ускоряет гетерогенные реакции, а увеличение концентрации кислорода в воздухе интенсифицирует реакции горения, уменьшает содержание азота в газе и, следовательно, количество теплоты, выносимое из печи газом. [c.180]

    Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия кислорода как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например, окись азота, гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакции окисления ускоряются катализаторами. Например, в присутствие дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением. [c.373]


    Так как двуокись азота окрашена в бурый цвет, то при удалении стеклянной пластинки с цилиндра, наполненного бесцветной окисью азота, газ немедленно окрашивается в бурый цвет. Окись азота не горит и не поддерживает горения лучины или свечи. Но такие вещества, которые весьма энергично соединяются с кислородом, горят в атмосфере окиси азота. Например, фосфор и уголь сгорают в ней очень энергично. При этих реакциях выделяется свободный азот  [c.263]

    Ценную информацию о характере химических процессов, протекающих во внутреннем и внешнем пламенах, дают исследования спектров этих пламен при добавке окиси азота в газовую смесь. Как уже указывалось выше, возникающее при этом желто-зеленое свечение, обусловленное процессом N0 - - О NOa -f- hv, является индикатором на атомарный кислород. Особенно велика яркость этого свечения в пламени оки ся углерода, что указывает на большую концентрацию атомов кислорода в зоне горения СО. В соответствии с этим находится тот факт, что при введении N0 в смеси СН4 и других углеводородов с воздухом свечение NO2 возникает практически лишь во внешнем пламени, откуда следует преобладание в этом пламени реакции окисления СО. На ранних стадиях окислительного процесса, во внутреннем пламени, атомы кислорода образуются лишь в незначительных концентрациях. [c.482]

    Продукты реакции охлаждают и затем разделяют водород и газы реакции возвращаются в цикл, а жидкие продукты (бензин гидроформинга) подвергаются ректификации. Регенерация катализатора осуществляется так же, как и на установках каталитического крекинга [18, 78] выжигом отложенного кокса в струе воздуха остаточный воздух вместе с газообразными продуктами горения (двуокись углерода, окись углерода, азот и др.) нагретыми до 600° С и применяют для получения водяного пара. В качестве сырья используется фракция бензина прямой гонки. [c.131]

    При соединении водорода с кислородом выделяется очень много тепла 60 ккал моль воды поэтому пламя водорода, сгорающего в чистом кислороде, развивает температуру до 2500°. Платина, золото, окись алюминия в нем плавятся, а серебро и окись кремния кипят, обращаясь в тяжелые пары. При горении водорода на воздухе тепла выделяется столько же, но оно не целиком переходит в продукт реакции — водяные пары, а распределяется между молекулами водяного пара и азотом температура пламени оказывается значительно меньше. [c.278]

    Определение рациональных путей для совершенствования рабочего процесса ДВС в большой степени зависит от исследований, проводимых в направлении уменьшения токсических веществ в выпускных газах ДВС, анализа и обобщения полученных при исследованиях экспериментальных данных. Такие токсические вещества, как окись углерода СО, альдегиды, углеводороды СН, твердый углерод С (сажа), возникают в результате неполного сгорания топлива в предпламенных процессах и в процессе горения, а окислы азота образуются при соответствующих условиях за фронтом пламени — там, где реакции окисления топлива закончились (это говорит о термической природе реакций окисления азота в продуктах сгорания). Образование окислов азота зависит главным образом от температуры и времени пребывания газа в камере сгорания. При температуре ниже 1800 К образование окислов азота практически не происходит. [c.229]

    Для анализа результатов, полученных в предположении о частичном равновесии в продуктах сгорания углеводородного горючего и других газах, содержащих окись углерода, необходимо рассмотреть равновесие реакции (XXI). В [12] при исследовании пламен смеси водород — окись углерода — воздух было обнаружено, что при смещении от стехиометрического состава в сторону обогащения смеси горючим равновесие по водяному пару в продуктах сгорания [посредством реакций (I) и (XXI)] не достигается, если температура пламени ниже 1500 К. На рис. 2.13 и 2.14 показаны профили мольных концентраций стабильных компонентов при горении смесей водород — окись углерода — воздух, в одной из которых конечная адиабатическая температура близка к 1650 К, а в другой — к 1350 К. Хорошо видно наличие максимумов концентрации водяного пара в обоих пламенах и недостижение равновесной концентрации Н2О во втором случае. В качестве еще одного примера использования подхода, связанного с предположением о частичном равновесии, интересно рассмотреть образование окиси азота путем связывания атмосферного азота в зоне горения в одномерном пла- [c.126]


    Последние взаимодействуют между собой по так называемой реакции водяного газа (СО -f Н2О СО2 - - Н2), которая имеет большое значение во всех процессах неполного горения. Эта реакция при высоких температурах идет настолько быстро, что водород, окись углерода, водяной пар и углекислота в продуктах горения, покидающих реакционное пространство, находятся обычно в равновесии. Этому равновесию не мешает присутствие в продуктах горения не только инертного азота, но и продуктов, не находящихся в равновесии. К таким продуктам можно отнести метан (в небольшом количестве всегда присутствующий в продуктах неполного горения), ацетилен, этилен и твердый углерод в виде частичек сажи. [c.4]

    Среди примеров катализаторов реакций горения укажем воду НдО, которая влияет на реакцию окисления окиси углерода СО + /2 2 СЮа ). Механизм реакции, но которому протекает катализ, таков СО + НдО СОз -Ь -Ь 2Н и 2Н -1- 72 2 НзО. Окись азота (N0) также служит ката.лизатором реакции окисления СО по механизму N0 Ч- Оз -> 2N02 и N 3 + СО N0 -1- СОз. В обоих этих примерах промежуточное соединение (например, Н или КОз) образуется, а затем разлагается. Добавление небольшого количества КОз к смеси Нд — Оз приводит к взрыву с разветвленной цепной реакцией. [c.497]

    Было найдено, что при изменении температуры поверхности углерода от 1500 до 2000°К скорость горения углерода из нефтяного кокса увеличивается пропорционально корню квадратному из скорости потока газа. Было показано, что во всем исследованном диапазоне температур скорость горения углерода из нефтяного кокса прямо пропорциональна концентрации кислорода при изменении ее от 37 до 100%. По мере того как скорость потока газа увеличивалась от 25 до 305 м сек, кажущаяся энергия активации для горения углерода из нефтяного кокса уменьшалась от 5,3 до 2,3 ккал1моль. Было найдено, что азот, гелий, двуокись и окись углерода действовали на горение только как разбавители пары воды уменьшали отношение СО/СОг, а хлор сильно тормозил реакцию горения. [c.257]

    Отсутствие замороженности этой адиабатической реакции резко отличает окись азота от СО, которая, несмотря на гораздо большую экзотермичность реакции горения [c.217]

    Закись азота легко разлагается на азот и кислород при действии жара и ряда электрических искр, а это объясняет то, что множество тел, не могущих гореть в окиси азота, напротив того, весьма легко горят в закиси. Действительно, окись азота, если, разлагаясь, дает кислород, — тотчас же поглощает его, образуя прочную NO , а в закиси азота зовсе нет этой способности прямо далее соединяться с кислородом. Смесь закиси азота с водородом взрывает точно так, как гремучий газ, причем образуется, конечно, газообразный азот N -0- -H = = Н О -)- N . Объем остающегося азота равен первоначальному объему взятой закиси азота и равен объему водорода, входящего в соединение с кислородом значит, равные объемы азота и водорода в этой реакции замещают друг друга. Зажженные сера, фосфор, уголь горят, хотя и не столь ярко, как в кислороде. При горении в закиси азота развивается более тепла, чем при горении того же количества тел в кислороде, что и показывает ясным образом, что при соединении азота с кислородом для образования закиси азота произошло поглощение тепла (21000 кал. на 44 г №0). Если разлагают данный объем закиси азота металлом, напр., натрием, то по охлаждении остается совершенно такой же объем азота, какой имела закись следовательно, кислород, так сказать, располагается между атомами азота, не производя при этом увеличения в объеме азота. [c.209]

    Для полного и быстрого горения газа необходимо создать хорошие условия перемещивания его с воздухом в соотнощени-ях, обеспечивающих протекание реакций взаимодействия между горючими компонентами и кислородом. Реакции полного сгорания комлонентав горючего газа и тепловой эффект горения представлены в табл. 27. Приведенные данные показывают, что при горении газов получаются продукты горения, состоящие из углекислоты и водяных паров. Если в газе содержатся сернистые соединения (например, сероводород), то в продуктах сгорания будет находиться сернистый газ. В дымовых газах также будут содержаться азот воздуха, поступивщего на сжигание таза, и избыточное (неизрасходованное) количество кислорода воздуха. При недостаточном поступлении воздуха в продуктах сгорания, как правило, содержится и окись углерода — продукт неполного горения углеводородных газов, а также несгоревшие компоненты газа. [c.115]

    НОМ 3, И Нг К Н2О, превышающем 1,2, окалины на стали (не образуется. Поскольку от сжигания топлива до СО получается мало тепла, а несгоревший водород и вовсе не дает тепла, то невозможно при вышеуказанных соотношениях достичь температуры 1200°, если не принять каких-либо специальных мер для повышения температуры печи. Такими мерами могут быть сжигание топлива в кислороде или дожигание его в регенераторах или рекуператорах, которые служат для подогрева воздуха, расходуемого на горение или дожигание газов в особой камере, из которой тепло передается в нагревательное пространство через тонкую муфельную стенку. Номограмма на рис. 151 применима только для железа и стали. Разные металлы имеют различное химическое сродство с кислородом. Чтобы для других металлов получить номограмму, аналогичную изображенной на рис. 151, надо ее продлить в направлении обеих стрелок. Такое распространение номограммы на другие металлы было выполнено тем же Нейманном (рис. 152). Номограмма дана в логарифмических координатах со следующими делениями 1, 2, 5, 10, 20, 50, 100 и т. д. Более мелкие деления показаны на вспомогательных шкалах. iMeждy прочим, из рис. 152 видно, что никель в так называемой окислительной атмосфере печи не окисляется. Количество водорода может составлять нё более 1% от количества водяного пара, а окиси углерода — всего 1 % от количества углекислого газа, никель окисляться не будет. Кривая равновесия марганца располагается вблизи противоположного конца номограммы. При температурах, поддерживаемых в печи, марганец будет окисляться даже в том случае, если атмосфера печи будет состоять из чистого водорода, окиси углерода и инертного газа, например азота. Активность марганца при высоких температурах по отношению к кислороду используется для восстановления стали в мартеновских печах. В атмосфере, состоящей из окиси углерода и инертного газа, марганец при температурах печи окисляется благодаря реакции 2С0 = С -f СО2. Хотя окись углерода (СО) при повышенных температурах является весьма устойчивым соединением, указанное выше явление временной и исчезающей диссоциации обусловливает и эту быстг ро протекающую реакцию. Вновь возникающие молекулы углекислого газа диссоциируют таким же способом, и марганец окисляется временно освобождающимся кислородом. На рис. 152 приведены также кривые равновесия других используемых в промышленности металлов. [c.201]

    В 1756 М. В. Ломоносов )та основе количественных опытов установил, что горение и окисление являются процессами соединения окисляемого вещества с частицами воздуха, а А. Лавуазье в 1774—77 доказал, что это соедипепие происходит о определенной составной частью во.здл ха — кислородом. В 1748 Ломоносов и независимо от него в 1774 Лавуазье открыли з а к о п сохранения массы веществ в химических реакциях. После открытия этого закона X. была превращена из качественно-описательной в количественную науку. Вторая половина и особенно последняя четверть 18 в. весьма богаты эксперимеитальнымн открытиями в области X. К началу 18 в. было известно только 1.Я хпмпч. элементов, а к концу 18 в.— 32, т. е. за одно столетие было открыто 19 элементов, в т. ч. кислород, водород, азот, хлор. Кроме того, в 18 в. установлен состав воздуха и воды, открыты окись и двуокись углерода, аммиак, сер]и1стыи ангидрид и др. газообразные соединения. Исследование газов приобрело широкий размах и составило направление пневматической X и м и и. [c.332]

    Если малые навески нитроцеллюлозы нагреть до температуры выше 180° С, то после короткого периода индукции они воспламенятся. Воспламенению предшествует превращение в жидкое состояние и ускорение процесса разложения. В результате ускоренной реакции разложения образуется реагирующий газ, содержащий окислы азота, формальдегид, окись углерода и водород. В нрисутствии инертного газа эти продукты скопляются около поверхности нитроцеллюлозы, и может произо11ти воспламенение в газовой фазе, которое приведет к поверхностному горению навески. При очень низких давлениях этот реагирующий газ диффундирует так быстро, что восиламене-ния не происходит. В этих условиях ускоренное разложение в жидкой фазе может привести к тепловому взрыву. [c.435]

    При продувке пылеуловителей и шлейфов на станциях подземного хранения газа (СПХГ) нередки случаи самовозгорания газа. При горении образуются закись, окись и двуокись азота, причем последняя наиболее токсичная. Двуокись азота может поглощать фиолетовые лучи и поэтому способствует фотохимическим реакциям в атмосфере. Кроме того, соединяясь с водой, она образует азотную кислоту. [c.20]


Смотреть страницы где упоминается термин Окись азота реакция горения: [c.43]    [c.223]    [c.317]    [c.443]    [c.1039]    [c.200]    [c.13]    [c.221]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.60 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.60 ]




ПОИСК







© 2025 chem21.info Реклама на сайте