Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика процесса соединений

    Если процесс восстановления протекает на катоде с малым перенапряжением выделения водорода, первая стадия процесса не должна определять кинетику суммарного процесса, а потенциал катода можно считать близким к равновесному. В этом случае строение двойного электрического слоя и адсорбция поверхностноактивных веществ не будут сказываться на кинетике процесса, и определять закономерности последней будет замедленность химической стадии восстановления органического вещества атомарным водородом. Если же процесс протекает на катоде с высоким перенапряжением выделения водорода, определять кинетику восстановления будет замедленность первой электрохимической стадии, и кинетические закономерности восстановления не будут отличаться от наблюдаемых для перенапряжения выделения водорода на этом металле. Плотность тока в этом случае не будет существенно зависеть от концентрации органического вещества в электролите. Подобные кинетические закономерности наблюдаются также при использовании, так называемых, переносчиков водорода, каталитических добавок ионов металлов переменной валентности, таких как титан, ванадий, хром, церий и т. д. Подобные добавки применяют в тех случаях, когда электродный процесс восстановления органического соединения требует значительно большего перенапряжения, чем восстановление иона металла переменной валентности, например в то время как восстановление органического вещества происходит без затруднений в растворе под действием который окисляется до Естественно, что кинетика суммарного процесса восстановления органического соединения в этом случае будет определяться замедленностью процесса восстановления ионов металла переменной валентности. [c.445]


    Несмотря на значительный объем опубликованных исследований наши знания о реакциях окисления простейших углеводородов остаются пока далеко неудовлетворительными. Фактически жидкофазное окисление таких относительно сложных соединений, как кумол или высшие олефины, изучено лучше, чем окисление этана или пропана. Критические способности заинтересованного исследователя редко подвергаются таким испытаниям, как при изучении всей обширной литературы по окислению углеводородов. Сильно выраженное влияние характера поверхности и незначительных количеств примесей на скорость реакции, а такн е часто наблюдаемое полное изменение природы продуктов и кинетики процесса при изменении температуры и соотношения участвующих реагентов являются причиной значительных разногласий между исследователями. Очень часто не удавалось составить удовлетворительный материальный баланс опыта, поскольку методы анализа сложных смесей жидких и газообразных продуктов реакции были разработаны лишь недавно. Значительные неясности вызываются реакциями, происходящими между конденсированными продуктами окисления и не имеющими отношения к первичным реакциям окисления. [c.318]

    Скорость образования аддуктов и клатратов заметно выше скорости, при которой достигается равновесие в большинстве процессов адсорбции кинетику.последних можно сравнить с кинетикой образования соединений включения в кристаллических решетках с пустотами в форме слоев (цеолиты). [c.76]

    Кроме стабильности катализатора, характеризующей продолжительность его эксплуатации до падения активности ниже экономически целесообразного предела (в так называемом большом цикле), важным параметром, определяющим эксплуатационные качества катализатора, является продолжительность его работы между регенерациями (в так называемом малом цикле). Длительность малого цикла контактирования связана, как правило, со скоростью отложения на катализаторе углерода или высокоуглеродистых высокомолекулярных соединений (называемых условно коксом). Скорость процесса закоксовывания катализатора определяется как его свойствами, так и условиями эксплуатации. Имеется ряд работ по кинетике процессов закоксовывания, например [7, 8]. Среднее количество кокса в зерне катализатора [c.363]

    Под полимеризацией понимают химическую реакцию, при которой мономерные соединения, содержащие реакциониоспособпые двойные связи или реакционноспособные кольца, самопроизвольно или под действием инициаторов или катализаторов превращаются в полимеры . Характерной особенностью полимеризации является, однако, не схема присоединения, а кинетика процесса полимеризация, приводящая к высокомолекулярным веществам, является цепной реакцией (Штаудингер). [c.931]


    Непрерывное коксование осуществляют при более высоких температурах (520—550 °С), чем замедленное коксование, и па поверхности контактов (коксовых частиц). Однако повышенная температура в зоне реакции еще не приведет к большей глубине разложения сырья, чем при замедленном коксовании. Особенность коксования на твердых теплоносителях — интенсивное испарение части исходного сырья без существенной деструкции, что, очевидно, должно привести к снижению выхода продуктов деструкции и уплотнения, протекающих в жидкой фазе. Деструкция в паровой фазе при непрерывных процессах коксования, в отличие от замедленного коксования, протекает с большей скоростью. В связи с этим конечная глубина разложения и выход продуктов определяются главным образом кинетикой процесса в паровой фазе, а влияние давления на показатели процесса более существенно, чем при замедленном коксовании. Деструкция в паровой фазе промежуточных фракций должна привести к повышенному газообразованию и увеличению в продуктах распада содержания непредельных соединений. [c.238]

    Рассмотрим подробно наиболее интересную стадию физико-химических превращений в массе кокса — десорбцию и удаление вторичных сернистых соединений. Кинетика процесса обессеривания нефтяных коксов в общем случае определяется скоростью теплопередачи и химическими факторами (температура, время, энергия активации процесса). При этом возможны трп варианта  [c.222]

    В химической промышленности осуществляются все виды научных исследований — фундаментальные, поисковые и прикладные (табл. 2.2). Фундаментальные исследования дают новые представления о составе и свойствах химических соединений, кинетике процессов, новых явлениях, методах синтеза и анализа, о новых химических продуктах и т. п. Их результатом являются новые сведения, информация, причем не каждый результат может быть сразу и прямо использован в производстве, нередки отрицательные результаты, однако фундаментальные исследования служат генератором обоснованных идей, которые получают свое развитие в дальнейших научных исследованиях. [c.37]

    Кинетика процесса гидрокрекинга. Реакции расщепления и изомеризации, протекающие в процессах гидрокрекинга, являются типичными реакциями первого порядка. Распад углеводородов тормозится образованием продуктов расщепления и изменением условий адсорбции [271,272, 273]. Г идрирование и деструктивное гидрирование — реакции второго порядка под высоким давлением водорода равновесные выходы сдвигаются в сторону образования насыщенных соединений и гидрирование может протекать практически до конца. Для поддержания необходимого парциального давления водорода требуется его значительный избыток в связи с этим бимолекулярные стадии гидрогенизации будут описываться уравнениями для псевдомономолекулярных реакций. Таким образом, больщинство реакций, протекающих при гидрокрекинге, должно иметь первый порядок, являющийся для расщепления и изомеризации истинным, а для гидрирования — кажущимся [274]. [c.245]

    В рамках данного проекта проводятся исследования перспективного метода синтеза циклогексаноноксима - исходного продукта в производстве е-капролактама окислительным аммонолизом циклогексанона. Реакция окислительного амманолиза осуществляется при взаимодействии циклогексанона с аммиаком и перекисью водорода при 10-20°С. В качестве катализатора нами использовались растворимые в водной фазе соединения вольфрама. Стабилизация распада перекиси водорода осуществлялась с помощью трилона-Б Было установлено, что при молярном соотношении циклогексанон перекись водорода аммиак = 14 5 выход циклогексаноноксима составляет 93-95% на загруженный циклогексанон при практически полной его конверсии. С целью выяснения механизма реакции окислительного аммонолиза циклогексанона была изучена кинетика процесса и показано, что он протекает через промежуточное образование гидропероксициклогексиламина Для получения циклогексанона и перекиси водорода предложено использовать жидкофазное окисление цикJюгeк aнoлa В зтой связи подробно изучена реакция окисления циклогексанола - температура, продолжительность реакции, концентрация катализатора, выделение смеси циклогексанона и перекиси водорода, которая непосредственно была использована для получения циклогексаноноксима. Изучена кинетика реакции окислительного аммонолиза циклогексанона и предложен механизм реакции [c.53]

    Реакция с участием двух промежуточных соединений в кинетическом режиме. Если же первая стадия реакции (5.141) протекает во времени, т. е. кинетика процесса на этой стадии соизмерима с кинетикой последующих превращений промежуточных соединений [c.198]


    Процесс сочетания протекает очень эффективно с быстрым образованием ярко окрашенных продуктов из бесцветных реагентов. По склонности к образованию главным образом пара-замещенных соединений и быстроте взаимодействия в водном растворе даже при 0°С реакцию сочетания можно сравнить с С-нитрозированием азотистой кислотой. Обе реакции специфичны для аминов и фенолов и обусловлены сильным ориентирующим влиянием амино- и оксигрупп. При изучении кинетики процесса сочетания в растворах разной кислотности было установлено, что одним из реагирующих компонентов всегда является электрофильный ион диазония, а другим компонентом при сочетании с аминами является неионизированнЫй амин [c.271]

    В большинстве случаев кинетику процесса обессеривания определяет диссоциация органических сернистых соединений н удаление из углеродистых материалов сульфидов и сульфатов металлов. В связи с этим представляет интерес проанализировать имеющийся по данному вопросу материал. Сообщается [246], что существует некоторая связь между содержанием серы в жидком сырье п полученным нз него коксом. Однако какой-либо четкой закономерности между этими показателями не наблюдается [3], хотя и имеется общая тенденция к увеличению содержания серы в коксе с повышением ее содержания в исходном сырье. [c.210]

    Наличие сернистых соединений в нефтяных коксах влияет на механизм и кинетику процесса графитации. На рис. 43 показано изменение межслоевого расстояния в кристаллитах коксов ФНПЗ и НУ НПЗ и содержания в коксах серы в зависимости от температуры обработки. Из рисунка видно, что оо2 снижается для разных коксов неодинаково. На рентгенограмме кокса НУ НПЗ, начиная с интервала обессеривания, в отличие от рентгенограммы малосернистого кокса, появляется вторая фаза, свидетельствующая о наличии гетерогенной графитации, что согласуется с литературными данными [5, 147], По-видимому, гетерогенная графитация протекает через газовую фазу, переносчиком углерода в этом процессе является сера. При температурах до 2200 °С лучше графитируется сернистый кокс, при более высоких температурах с оо2 малосернистого и сернистого кокса различаются незначительно, что обусловлено удалением сернистых соединений до достижения этой температуры. Это обстоятельство было подтверждено также при графи-тацни нефтяных коксов с различным содержанием серы материнской и введенной искусственно. [c.149]

    Литературные данные по кинетике процесса регенерации противоречивы. По мнению авторов работы [15], лимитирующей стадией является разложение сравнительно стойких химических соединений. По данным [108], разложение карбаматов протекает в основном достаточно быстро. К. п. д. тарелок имеют значения, близкие для процессов, скорость которых контролируется- диффузией в газовой фазе. Сделан вывод о том, что по крайней мере в исследованных условиях скорость массопередачи при десорбции СОа из раствора МЭА такова- же, что и при абсорбции хорошо растворимого газа. [c.198]

    Настоящая работа посвящена определению оптимальных конструкций ректификационных аппаратов и исследованию кинетики процесса в условиях ректификации металлов, их соединений и полупроводниковых материалов. [c.2]

    Однако состав промежуточного соединения, не говоря уже о содержании в нем растворителя, нельзя однозначно установить по кинетике процесса. Промежуточное соединение могло бы содержать не один атом брома а два — как лимитирующее переходное состояние. Даже если соответствующие такому составу механизмы являются кинетически возможными, они определенно выглядят менее убедительными, чем механизмы, включающие образование промежуточного соединения 16. [c.157]

    Описание кинетики процесса окисления молекулярным кислородом существенно усложняется, если учесть возможные реакции пероксильных радикалов с соединениями переходных металлов на стадиях продолжения и обрыва цепей, другие реакции с участием гидропероксидов. [c.248]

    Современная теория дислокаций может явиться основой для углубленного изучения механизма и кинетики процессов разрушения кристаллов при растворении минералов и других химических соединений. При этом представляется возможным исходить из данных по экспериментальному и теоретическому изучению влияния дислокации на механизм и кинетику процессов роста и испарения кристаллов, если процессы разрушения решетки при растворении рассматривать как противоположные тем, которые происходят при росте кристаллов, или в какой-то мере аналогичны происходящим при их испарении. При этом следует учитывать, что уже давно отмечается много общих черт у процессов роста и растворения кристаллов [43]. [c.73]

    Большое количество измерений энергии диссоциации связи было произведено Шпарцеы с сотрудниками [50] при пиролизе углеводородов, в быстропоточно систсме в присутствии значительного избытка толуола. Большая скорость потока обеспечивает отсутствие дальнейших реакций и, таким образом, кинетика процесса не искажается. Образующиеся свободные радикалы вступают в реакцию преимуш ественно с избыточным толуолом, что приводит к ингибированию радикальных цепей. С другой стороны, образующиеся радикалы бензила сильно стабилизуются резонансом и, следовательно, являются нереакционноспособными, подвергаясь только-димеризации. Характер реакции может быть проверен путем выделения дибензила и сопоставления количества его с выходом других продуктов реакции. Как и в случаях, указанных выше, наблюдаемая энергия активации приравнивается к энергии диссоциации изучаемой связи. Метод ограничивается соединениями с более слабой связью, чем связь С—И в толуоле, так как в противном случае реакция осложняется термическим разложением последнего. [c.15]

    Весьма важный тин самоингибитирования наблюдается у многих а-метиленовых олефинов, типичным представителем которых является аллилацетат. При нолиморизации этого соединения получается низкомолекулярный продукт, реакция эта требует довольно больших количеств катализатора. Кинетика процесса подробно изучалась Бартлетом и Альт-шулем[12]. Они показали, что при применении перекиси бензоила скорость реакции пропорциональна первой степени, а не корню квадратному от концентрации катализатора, что молекулярный вес полимера не зависит от скорости полимеризации и что получается одна молекула полимера на частицу катализатора, инициирующую цепь. Эти результаты согласуются со следующей схемой, согласно которой молекула мономера может подвергаться двум типам реакций с растущей цепью  [c.130]

    Остановимся на особенностях применяемого катализатора. Несмотря на то что катализатор твераый, кинетику процесса можно выразить через концентрации газообразных реагентов (парциальные давления), а не как функцию поверхности катализатора, на которой адсорбируются реагенты и продукты реакции (как в случае классического гетерогенного катализа, например, р реакции Фишера — Тропша). Другими словами, оксосинтез можно рассматривать как своего рода гомогенный процесс. Это объясняется тем, что роль катализатора играют группы карбонила кобальта, образующиеся в ходе реакции, растворимые в органических соединениях. [c.218]

    Реакционная способность углерода сильно зависит от его структуры и чистотьр), т. е. наличия в составе его примесей. Например, исследования реакционной способности углерода показали значительное действие карбонатов натрия, калия, лития и солей железа на температуру его воспламенения [61, 63]. В этой связи при изучении кинетики процесса взаимодействия углерода с кислородом применяют графит или древесный уголь, либо другие искусственно приготовленные беззольные угли [62, 64]. Некоторые исследователи используют хорошо подготовленный беззольный и не содержащий летучих соединений уголь с вы- [c.21]

    Исследование механизма и кинетики процессов холоднопламенного окисления углеводородов позволило установить, что они протекают аутокаталитически, ускоряясь промежуточными соединениями. Это доказывается медленным индукционным периодом, после которого наступает быстрая цепная реакция окисления, ускоряемая образованием свободных радикалов. Например, окисление пентана можно представить следующим образом  [c.197]

    Если равновесие на первой стадии реакции устанавливается много быстрее последующих химических процессов (этот случай довольно часто реализуется на практике), концентрация промежуточного соединения Xj определяется лишь концентрацией свободного фермента, субстрата и величиной константы равновесия. Рассмотрим этот механизм в условиях, когда [S]o fEJfl, и на небольшой глубине превращения субстрата, т. е. при условии (5.90) тогда кинетику процесса описывает следующая система уравнений  [c.191]

    В качестве более сложного примера можно привести кинетику процесса так называемой афйнной модификации, нашедшей широкое применение в исследовании биологических высокомолекулярных соединений — белков и нуклеиновых кислот Библогическай активность этих полимеров часто обусловлена их способностью связывать системой нековалентных связей определенное низкомолекулярное соединение, которое в этом случае называют специфичным лигандом. Область биополимера, с которой связывается лиганд, называется активным центром. Конкретный пример структуры активного центра приведен в гл. VI при рассмотрении катализа ферментами (см. рис. 87).  [c.287]

    Проведенные исследования кинетики нитроксилирования соединений каркасного сгроения даюг возможность создания научных основ разработки новых технологических процессов функционапизации насыщенных углеводородов. [c.15]

    Регулирование времени гелеобразования возможно путем использования комплексных соединений, например, цитрата алюминия, при вводе которого в раствор полимера алюминий освобождается из комплекса и сшивает полимер. Р.Терри с соавторами (1981 г.) исследовал кинетику процесса гелеобразования при взаимодействии полиакриламида с ионами хрома. Отмечено, что после введения восстановителя в раствор полиакриламида и Сг" нгблюдается увеличение вязкости во времени при установившемся сдвиге в вискозиметре Брукфильда. Время гелеобразования определялось как время, необходимое для увеличения сдвиговой вязкости до произвольной величины. [c.82]

    Объектам исследования являются полиамидные полимеры и попиолефипы. Исследуется кинетика неизотермической. деапр)кции високамолекулярных соединений. Установлен ступенчатый характер термической деструкции процесса. Разработан комплекс алгоритмов и программ, расчета неизотермической кинетики процессов деструкции и изотермической кинетики процесса крашения, который рекомендован для расчета неизотермического и изотермического реакторов периодического действия и технологических процессов термической переработки отходов полимеров. [c.4]

    В пришщпе, можно усовершенствовать эти общие системы, чтобы получать более количественный результат в тех случаях, когда от анализа требуется больше, чем положительний или отрицательный ответ. Конфигурация сенсора зависит от того, какой внд анализа предпочтителен конкурентный или саадаичевый. Теоретически особенно жизненной альт нативой кажется конкурентное смещение флуоресцентной метки. Так как это равновесный процесс, то загрязнения или прнмеси на поверхности не должны изменять абсолютного результата, хотя вполне возможно влияние на отношение сигнал/шум [7.8-50] Вероятным недостатком являегся то, что успех такого анализа со смещением очень сильно зависит от относительной кинетики связывания соединения с меткой и пробой. Для получения количественного результата они должны значительно различаться. [c.552]

    Точное рассмотрение кинетики процесса удаления сернистых соединений требует решения сложной системы дифференциальных уравнений. Предварительная оценка кинетики термообессерива-ния показывают, что ограничивающей стадией является разложение серауглеродного комплекса, которое может интенсифицироваться либо повышением температуры, либо подачей в зону реакции углеводородных газов [3, 4]. [c.225]

    Попытки доказать с помощью меченых атомов или путем измерения кинетики процесса, что в реакции Лобри де Брюина — Альберда ван Экенштейна ендиол действительно является промежуточным соединением. [c.101]


Смотреть страницы где упоминается термин Кинетика процесса соединений: [c.439]    [c.362]    [c.267]    [c.318]    [c.23]    [c.101]    [c.21]    [c.20]    [c.104]    [c.227]    [c.122]    [c.287]    [c.55]   
Каталитические процессы переработки угля (1984) -- [ c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика процессов



© 2025 chem21.info Реклама на сайте