Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тантал углеродом

Рис. 36. Фазовая диаграмма системы тантал — углерод [1]. Рис. 36. <a href="/info/133476">Фазовая диаграмма системы</a> тантал — углерод [1].

Рис. 48. Фазовая диаграмма тройной системы ниобий — тантал — углерод [2]. Рис. 48. <a href="/info/916324">Фазовая диаграмма тройной системы</a> ниобий — тантал — углерод [2].
    Диборид тантала Углерод 2270 4, 1 0,0 [c.76]

    Анализ работ различных авторов, в которых имеются существенные расхождения при определении давления насыщенных паров химических элементов, позволяет предполагать, что одной из причин таких отклонений является неучет влияния конструкции и геометрии эффузионной камеры. В связи с этим появились работы по выбору наиболее оптимальных размеров цилиндрической эффузионной камеры с эффузионным отверстием по оси цилиндра [4—7] и проведена сравнительная оценка полученных результатов [6]. Такие эффузионные камеры показали вполне удовлетворительную надежность при определении давления насыщенных паров химических элементов и соединений, различных металлов и сплавов в основном в температурном диапазоне работы платинородиевых термопар [1, 2, 12]. Результаты многочисленных исследований в области высоких температур по испарению вольфрама, молибдена, тантала, углерода, карбидов переходных металлов и других [8, 11] выявили существенные недостатки эффузионных камер с отверстием по оси цилиндра (торцовые камеры). [c.296]

Рис. 59. Диаграмма состояния сплавов системы тантал — углерод Рис. 59. <a href="/info/1487764">Диаграмма состояния сплавов системы</a> тантал — углерод
    Термическую и термомеханическую обработку тантала из-за большого сродства с газами (углерод, кислород, азот и водород) проводят только в вакууме. [c.79]

    Ванадий, ниобий и тантал взаимодействуют с кислородом,галогенами, азотом, водородом, углеродом и другими веществами — оксидами, кислотами и т. д. Однако химическая активность этих металлов проявляется только при высоких температурах, когда разрушается защитная пленка, делающая нх пассивными при обычных условиях. Особенно прочная пленка образуется иа поверхности тантала, который по химической стойкости не уступает платине. [c.276]


    Карбиды ванадия, ниобия и тантала образуются при непосредственном взаимодействии металлов с углеродом или путем вытеснения других металлов из их карбидов, например  [c.279]

    Сера Серебро Скандий Стронций Сурьма Таллий Тантал Теллур Тербий Технеций Титан Торий Тулий Углерод Уран Фосфор Фтор. Хлор Хром [c.649]

    Так протекают реакции с оксидами кадмия, меди, свинца. При взаимодействии углерода с оксидами кальция, ванадия, тантала получаются карбиды  [c.133]

    Использование специальных сплавов. Небольшие количества легирующих добавок, имеющих сродство к углероду и азоту, например алюминия, титана или ниобия и тантала [17], повышают устойчивость стали к КРН, но не предотвращают его. Легирующие добавки <2 % Ni повышают склонность к КРН низкоуглеродистых сталей в нитратах >1 % Сг или Мо —снижают.. Охлажденные с печью (перлитные) стали, содержащие >0,2 % С, обладают устойчивостью [18]. [c.136]

    Высокая химическая устойчивость тантала к различным химическим воздействиям наряду с большой твердостью, тягучестью и ковкостью делает этот металл (также и ЫЬ) весьма пригодным для изготовления ответственных частей заводской химической аппаратуры. Сплавы тантала с углеродом исключительно тверды и находят применение для изготовления важных сварных конструкций (например, для самолетов). В чистом металлическом состоянии ЫЬ и Та находят применение в электротехнической промышленности. [c.375]

    Свинец. Селен Сера. . Серебро Скандий Стронций Сурьма Таллий. Тантал. Теллур. Титан. Торий. Углерод Уран. . Фосфор Фтор. . Хлор. . Хром. . Цезий. Церий. Цинк. . Цирконий [c.286]

    Химические свойства. Ванадий, ниобий и тантал реагируют с кислородом, галогенами, азотом, углеродом, водородом и другим веществами (пары воды, СОа и т. д.). Однако их химическая активность проявляется только при высоких температурах, когда разрушается защитная оксидная пленка, делающая их пассивными в обычных условиях. Особенно прочная пленка наблюдается у тантала, который по стойкости не уступает платине. [c.91]

    Соединения ванадия, ниобия и тантала с азотом, углеродом, кремнием и бором обладают металлической электропроводностью, растущей с понижением температуры и переходящей в сверхпроводимость, как и у чистых металлов. [c.96]

    Карбид тантала ТаС образуется прокаливанием смеси Та О с углеродом при 1250° С. ТаС представляет собой черное твердое кристаллическое вещество с плотностью 13,96 и температурой плавления 4100° С. Он не растворяется в кислотах. [c.317]

    Методом хлорной металлургии получают кремний и такие тугоплавкие цветные металлы, как титан, ниобий, тантал и др. Основным процессом при этом является превращение оксидов металлов в хлориды с участием восстановителя, нанример углерода (в виде кокса)  [c.293]

    Химическая активность переходных элементов ниже активности непереходных (5, -р-) элементов. Их металлы на воздухе покрыты защитными пленками оксида наиболее плотные защитные пленки у ниобия и тантала, рыхлые (малопрочные) — у цинка, марганца и железа. Все переходные металлы взаимодействуют с галогенами, кислородом, серой, азотом, при сплавлении — с кремнием, бором, углеродом. [c.497]

    Атомные радиусы ниобия и тантала почти совпадают (табл. 33), ионные радиусы одинаковой степени окисления тоже очень близки друг к другу, поэтому их соединения весьма сходны по свойствам. Металлы подгруппы УВ тугоплавки, обладают хорошими механическими свойствами, сильно зависящими от содержания примесей водорода, углерода, кислорода и азота. Эти примеси увеличивают твердость, делают металлы хрупкими и менее пластичными. Подвергнутые электроннолучевой плавке в вакууме, ниобий и тантал очень пластичны и хорошо обрабатываются в холодном состоянии. [c.333]

    При обыкновенных условиях эти металлы пассивны, так как покрываются устойчивой защитной оксидной пленкой. Особенно химически устойчив тантал. При высокой температуре взаимодействуют с кислородом, галогенами, азотом, углеродом, водородом, двуокисью углерода и парами воды. [c.333]

    Физические и химические свойства. Физические свойства ванадия, ниобия и тантала (как и металлов IVB-подгруппы) зависят от степени чистоты. Примеси (кислород, водород, азот, углерод) понижают их пластичность и прочность, повышают твердость и хрупкость. [c.413]

    Лучший материал для анодов графит. Однако при взаимодействии лития с ним образуется карбид лития, разлагающийся в расплавленном электролите с выделением углерода [191]. Катоды обычно выполняют из низкоуглеродистой стали (пластины, стержни), так как растворимость железа в литии мала (<0,01 %). Еще более стойки к действию расплавленного лития ниобий и тантал, но они пока еще дороги. [c.70]

    Однако это условие не может считаться достаточным для объяснения накопленных фактов. Например, металлы с sp-валентными электронами (РЬ, Sn и др.) не дают таких структур, какие характерны для переходных металлов. Затем, несмотря на то, что радиус, например, Та в объемно-центрированной кубической решетке достаточно велик по сравнению с радиусом атома С, чтобы последний мог войти в пустоты решетки тантала, углерод почти не растворяется в объемно-центрированной решетке тантала. Очевидно, устойчивость подобных веществ определяется более сложно, а не просто отношением радиусов атомов. Среди карбидов, нитридов, гидридов есть не только твердые растворы, но и химические соединения переменного состава. Например, по результатам работ Б. Ф. Ормонта и сотрудников тот же углерод с танталом образует различные химические соединения переменного состава. Одно из таких соединений имеет область гомогенности при составе, изменяющемся от ТаСо за до ТаС о,во- Решетка этой Р-фазы отлична от индивидуальных решеток углерода и тантала и представляет собой гексагональную решетку, состоящую из атомов Та, октаэдрические пустоты которой статистически заняты атомами С. Другая, так называемая -f-фаза, представляет собой химическое соединение изменяющегося состава в пределах области гомогенности от Ta o jg до ТаС. Кристаллическая решетка в этом случае состоит из атомов Та с элементарной ячейкой гранецентрированного куба, в октаэдрических пустотах которой находятся атомы С. Когда эти пустоты заполняются полностью атомами С, то решетка превращается в решетку типа Na l (ТаС). Такую же решетку имеет монокарбид титана Ti . В ней может изменяться состав в пределах области гомогенности до Ti g в-Твердость, температура плавления, термодинамические свойства, плотность, периоды решетки и другие свойства этих важнейших жаростойких материалов зависят от состава фаз и изменяются с изменением числа атомов С в решетке. [c.144]


    Дубровская Л. Б., Матвеенко И. И., Гельд П. В., ФММ, 19, 243 (1965). Влияние температуры и состава на электропроводность - и у-фаз системы тантал — углерод. [c.258]

    Если приняты меры к предотвращению утечки токсичных газов в атмосферу лаборатории, то в распылительную камеру можно вводить многие элементы в виде водородных соединений. Например, Лакшманан и Митчелл [115] получали пленки сульфидов таких металлов, как кадмий, свинец, медь, олово и молибден путем их реактивного распыления в атмосфере H2S. Подобным же образом для реактивного распыления можно использовать и углерод, вводя его в виде метана. Это было проделано, например, 8 случае получения пленок системы тантал — углерод [106]. В пленках, изготовленных таким образом, почти наверняка будет присутствовать и водород, если только во время нанесения не будет достаточно высокой температура подложки и (или) не будуг кпол ьзованы определенные преимущества ионного распыления со смещением. [c.442]

    Образование четырехокиси тантала Таз04 наблюдалось в результате окисления тантал0В10Г0 ан Ода при разложении воды электролизом. П10 данным некоторых исследований этот же окисел образуется и при восстановлении пятиокиси тантала углеродом пр И температуре 1700°. [c.367]

    Гидриды, нитриды, карбиды. С водородом, азотом, углеродом, а также с бором и кремнием ванадий, ниобий и тантал образуют соединения интерметаллидного характера. Гидриды образуются при растворении водорода в ванадии, ниобии и тантале. Они обладают электронной проводимостью и способностью переходить при очеиь низких температурах в сверхпроводяп.1ее состояние. С металлами гидриды образуют твердые растворы. [c.278]

    Родий. Ртуть. Рубидий Рутеиий Самарий Свинец. Селен. Сера. . Серебро Скандий Стронций Сурьма. Таллий. Тантал. Теллур. Тербий. Технеций Титан. Торий. Тулий. Углерод Уран. . Фермий Фосфор Франций Фтор.  [c.19]

    Факторы, влияющие на точечную коррозию. Природа металла. Отдельные металлы и сплавы в разной степени проявляют склонность к точечной коррозии. Более других подвержены точечной коррозии пассивные металлы и сплавы. В растворах хлоридов наибольшую стойкость обнаруживают тантал, титан, хром, цирконий и их сплавы весьма склонны к питтингообра--зованпю в этой среде высоколегированные хромистые и хромоникелевые сплавы. Склонность к точечной коррозии ие всегда одинакова, она зависит от химического состава стали. Чем выше в стали содержание хрома, никеля и молибдена и чем меньше углерода, тем больше ее сопротивляемость точечной коррозии. Коррозионностойкие стали тем меньше подвержены пит-тингу, чем однороднее их структура, в которой должны отсутствовать включения карбидов и других вторичных фаз, а также неметаллические фракции, в частности окислы и сульфиды, уменьшающие стабильность пассивного состояния и облегчающие разрушение пассивирующей пленки ионами хлора. Некоторые виды термообработки, приводящие к улучшению однородности стали, благоприятно сказываются на ее сопротивляемости точечной коррозии. [c.443]

    Особым коррозионным свойством циркония является его стойкость в щелочах всех концентраций при температурах вплоть до температуры кипения. Он стоек также в расплаве гидроксида натрия. В этом отношении он отличается от тантала и, в меньшей степени, от титана, которые разрушаются под воздействием горячих щелочей. Цирконий стоек в соляной и азотной кислотах любой концентрации и в растворах серной кислоты с содержанием H2SO4 < 70 % вплоть до температур кипения этих сред. В НС1 и подобных средах оптимальной стойкостью обладает металл с низким содержанием углерода (<0,06 %). В кипящей 20 % НС1 после определенного времени выдержки наблюдается резкое возрастание скорости коррозии конечная скорость составляет обычно менее 0,11 мм/год [461. Цирконий не стоек в окислительных растворах хлоридов металлов (например, в растворах РеС1з наблюдается питтинг), а также в HF и кремнефтористоводородной кислоте. [c.379]

    Другое возражение связано с вопросом гомогенного возникновения зародышей кристаллов алмаза из раствора-расплава. Ввиду того, что алмаз обладает огромной поверхностной энергией (большей, чем у всех других веществ), работа образования зародыша кристалла для него будет аномально велика. Строгие расчеты показывают, что вероятность флуктуативного возникновения алмазного зародыша ничтожно мала. Еще один экспериментальный факт показывает, что предложенный механизм кристаллизации не может быть общим. В подавляющем большинстве случаев синтез алмазов происходит при такой температуре, когда активирующее вещество (металл или его эвтектическая смесь с углеродом или соответствующим карбидом металла) начинает плавиться. Однако имеются четко поставленные опыты, в которых кристаллизация алмаза происходила, а активирующее вещество (например, тантал) было в твердом состоянии. [c.136]

    Ванадий, ниобий и тантал характеризуются объемноцентрированной кристаллической решеткой. Механические свойства металлов весьма сильно зависят от их чистоты. Малейшие примеси водорода, углерода, азота и кислорода, содержащиеся в этих металлах, увеличивая твердость и предел прочности (временное сопротивление на разрыв), резко уменьшают пластические свойства (удлинение, работу вязкога разрушения, поперечное сужение), делая металлы хрупкими. [c.91]

    Металлический кальций применяют в металлургии, используя метод кальцнйтер-мни для получения чистых бериллия, ванадия, циркония, ниобия, тантала и других тугоплавких металлов, а также вводя его в сплавы меди, никеля и специальные стали для связывания примесей серы, фосфора, углерода. Его применяют также для очистки благородных газов от кислорода н аз га, с которыми кальций энергично взаимодействует. Кальций и барий используют как вещества (геттеры), служащие для поглощения газов и создания глубокого вакуума в алектронных приборах. [c.299]

    Рассмотрим твердые вещеста с атомными кристаллическими решетками, как неметаллическими (например, карбид кремния Si ), так и металлическими (например, УзТа), т. е. такие, в узлах кристаллических решеток которых находятся атомы, связанные так называемыми коллективизированными электронами (см. гл. 7). Пусть мы имеем, скажем, 10 моль подобного вещества в виде очень маленького монокристалла. Значит ли это, что в таком кристалле SI (масса его всего 4 мкг) находится точно по 10 моль атомов кремния и углерода или в кристалле УгТа (массой 30 мкг) на 2-10 моль атомов ванадия приходится точно 1-10 моль атомов тантала Чтобы ответить на этот вопрос, вспомним, что 10 моль — это около 6-10 атомов утвердительный ответ потребовал бы, чтобы числа разных атомов в кристалле совпадали с точностью до 16-го знака, что невероятно в реальных условиях образования кристалла. Таким образом очевидно, что в зависимости от условий получения подобных веществ они будут содержать избыток того или другого ком- [c.35]

    Все галогены окисляют (при нагревании) ниобий и тантал до пента-галидов ЭГа, но для ванадия известен только пентафторид УРб. Водород связывается этими металлами непрерывно (нестехиометрически), причем получаются твердые растворы гидридов с металлами. С азотом (при 1000° С) ванадий, ниобий и тантал образуют нитриды переменного состава (3N, ЭгЫ и др.). С углеродом они взаимодействуют в расплавленном состоянии получающиеся карбиды также имеют переменный состав (ЭзС, ЭС ит. п.). Кроме того, металлы УВ-подгруппы (особенно в порошкообразном состоянии) взаимодействуют с серой, фосфором, бором и кремнием. [c.413]

    Применение разнолигандных комплексов во многих случаях приводит к повышению селективности, контрастности реакций, улучшению экстракционных и других свойств. Приведем несколько примеров. Определение малых количеств тантала в присутствии больших количеств ниобия — очень трудная задача. Однако эта задача была успешно решена с применением экстракционно-фотометрического метода определения тантала в виде ионных ассоцнатов гекса фторид ноге комплекса тантала с основными красителями. Аналогичную трудность испытывали аналитики при определении малых количеств рения в присутствии больших количеств молибдена. Только применение экстракции с трифенилметановыми красителями дало возможность определять очень малые количества рения в молибдене или молибденовых рудах с довольно низким пределом обнаружения. Это же относится к определению осмия в присутствии других платиновых металлов, определению бора и других элементов. Введение второго реагента часто приводит к улучшению экстракционных свойств комплексов и снижению предела обнаружения. Так, дитизонат никеля очень плохо экстрагируется неводными растворителями. Для полной его экстракции тетрахлоридом углерода требуется примерно 24 ч. Если же ввести третий компонент — 1,10-фенантролин или 2,2 -дипиридил, то комплекс экстрагируется очень быстро, а предел обнаружения никеля снижается в пять раз. [c.299]


Смотреть страницы где упоминается термин Тантал углеродом: [c.24]    [c.178]    [c.172]    [c.499]    [c.28]    [c.319]    [c.125]    [c.818]    [c.239]    [c.432]    [c.334]    [c.218]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.69 ]




ПОИСК





Смотрите так же термины и статьи:

Тантал



© 2025 chem21.info Реклама на сайте