Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие РЗЭ с переходными металлами

    Схема взаимодействия применяется в том случае, когда результатом спин-орбитального взаимодействия являются большие по величине расщепления, а электрон-электронные взаимодействия достаточно малы, чтобы их рассматривать как возмущение спин-орбитальных уровней. К /-/-схеме обычно прибегают при изучении редкоземельных элементов и ионов третьего ряда переходных металлов. Согласно ]-]-схеме, спиновый угловой момент отдельного электрона взаимодействует с его орбитальным моментом с образованием суммарного вектора углового момента этого электрона j. Отдельные ] суммируются и дают вектор I полного углового момента атома. [c.67]


    Исходные компоненты каталитических систем не всегда содер-, жат металл-углеродные связи. Эти связи могут возникать в процессах взаимодействия катализатора с мономером, в частности при внедрении последнего по связи металл — лиганд или окислительного присоединения к переходному металлу. [c.105]

    Предмет этой главы уже был темой нескольких монографий [1—12]. Здесь мы дадим обзор электронной структуры ионов переходных металлов и разовьем несколько важных идей, которые будут способствовать пониманию спектроскопии комплексов ионов переходных металлов— нашего основного объекта. Системы ионов переходных металлов рассматриваются и в последующих трех главах, поскольку в этих ионах имеются неспаренные электроны, что приводит к различным осложнениям. Как это часто бывает, эти осложняющие факторы, если их удается понять, дают много информации о соединениях, образуемых ионами переходных металлов. Осложнения возникают по причине электрон-электронных взаимодействий, спин-орбитального взаимодействия и влияния магнитною поля на системы, обладающие неспаренными электронами. Ранее мы уже обсуждали многие из этих тем, но, чтобы понять их до конца, лучше всего рассмотреть примеры, взятые из химии ионов переходных металлов. [c.62]

    Сплавы внедрения. Соединения, образующиеся при взаимодействии переходных металлов с Н, В, С и N. отличаются весьма большой твердостью и высокими температурами плавления, но при этом имеют некоторые свойства, характерные для [c.262]

    Соединения внедрения образуются в результате взаимодействия переходных металлов с водородом, бором и азотом. Эти соединения по своим физическим свойствам похожи на металлы, обладают металлическим блеском и в большинстве случаев непрозрачны. Для соединений внедрения характерен полиморфизм и область гомогенности индивидуальных соединений. Во многих случаях обнаружены соединения нестехиометрического состава. [c.203]

    ВЗАИМОДЕЙСТВИЕ ПЕРЕХОДНЫХ МЕТАЛЛОВ С ВОДОРОДОМ [c.17]

    Взаимодействие переходных металлов с водородом [c.19]

    Константы взаимодействия переходный металл — водород [c.87]

    Рис- 3. Кривые зависимости констант взаимодействия переходных металлов с азотом от гомологической температуры. [c.56]

    Известно, что образование промежуточных пятикоординационных соединений в реакциях замещения квадратно-плоскостных комплексов металлов протекает с меньшей энергией активации для лигандов, склонных наряду с ст-донорным к л-дативному взаимодействию, обусловленному переходом электронов -орбиталей переходного металла на пустые или частично пустые орбитали лигандов. Эти представления позволяют разделить основания по их реакционной способности на два типа  [c.122]


    Уширение, обусловленное спин-решеточной релаксацией, возникает по причине взаимодействия парамагнитных ионов с термическими колебаниями решетки. Изменение во времени спин-решеточной релаксации в различных системах достаточно велико. Для некоторых соединений это время настолько велико, что их спектры удается наблюдать при комнатной температуре. Поскольку, как правило, время релаксации увеличивается с уменьшением температуры, хорошо разрешенные ЭПР-спектры многих солей переходных металлов можно получить лишь при температурах жидкого азота, водорода или гелия. [c.47]

    До сих пор мы не принимали во внимание спин-орбитальное взаимодействие (член А.Ь-8). Для ионов первого ряда переходных металлов его можно учесть, добавив энергию взаимодействия X. Ь 8 к энергиям уровней в качестве возмущения их величины. Такой подход вполне приемлем, если только X. Ь 8 мало по сравнению с электрон-электронными отталкиваниями и влиянием кристаллического поля. Диагональные матричные элементы Ь 8 рассчитываются в базисе из действительных орбиталей и добавляются к энергиям как поправки. Если спин-орбитальное взаимодействие велико, подход, основанный на возмущении, неприемлем. Например, 2 и 2 (знак относится к значениям электрона) имеют одно и то же значение mJ = Ъ 2 и смещиваются под действием Ь-8. [c.140]

    В комплексах каких из перечисленных ионов переходных металлов, имеющих тетраэдрическую структуру, следует ожидать вклад спин-орбитального взаимодействия Сг , Си " , Со , Ре" , Мп "  [c.160]

    Спектры ЭПР комплексов ионов переходных металлов дают быструю информацию об электронных структурах этих комплексов. Дополнительная информация и осложнения, характерные для систем ионов переходных металлов, обусловлены возможным вырождением /-орбиталей и тем, что многие молекулы содержат более одного неспаренного электрона. Эти свойства приводят к орбитальным вкладам и эффектам нулевого поля. В результате существования заметных орбитальных угловых моментов -факторы комплексов многих металлов очень анизотропны. Спин-орбитальное взаимодействие также приводит к большим расщеплениям в нулевом поле (от 10 см и больше) за счет смешивания основного и возбужденного состояний. [c.203]

    Уширение, обусловленное спин-решеточной релаксацией, возникает в результате взаимодействия парамагнитных ионов с тепловыми колебаниями решетки. Пределы изменения времени спин-решеточной релаксации для различных систем велики. Время жизни отдельных соединений настолько велико, что позволяет наблюдать спектр при комнатной температуре, тогда как в случае других систем это невозможно. Поскольку время релаксации обычно растет с понижением температуры, для получения хорошо разрешенного спектра многие соединения переходных металлов необходимо охладить до температуры жидкого азота или гелия. [c.204]

    Особенностью взаимодействия переходных металлов с азотом является склонность к образованию металлидных фаз внедрепия, для которых типичен состав АВ (S N, TiN, VN, rN и т. и.). Все эти соединения представляют собой односторонние фазы переменного [c.73]

    И атомов граничных вершин г/до-полиэдров заключается в способности как плоских полигональных углеводородов (например, цикло-пентадиенильной системы и бензола), так и атомов граничных вершин в имдо-полиэдрических карборанах [29] образовывать химические связи с переходными металлами аналогичных типов, включающие взаимодействие переходного металла со всеми атомами плоского многоугольника или с граничными атомами полигональной дырки ямйо-полиэдра. [c.130]

    Окклюзия газов некоторыми металлами представляет интерес и как процесс образования нестехиометрических соединений, рассматриваемых в этой книге. Превосходными примерами подобных нестехиометрических соединений являются некоторые структуры внедрения, образующиеся нри взаимодействии переходных металлов с такими неметаллами, как водород, бор, углерод и азот. Большое число работ, посвященных растворам внедрения уг-иерода в железо [37, 42, 69], является хорошей основой для понимания структур газ — металл. В намерение авторов не входит полный обзор работ в этой области, так как за последние годы на эту тему было опубликовано несколько обзоров [11, 12, 14, 94], а в библиографии перечислены некоторые из последних исследований по оккл юзии водорода металлами. Рассмотрим лишь некоторые закономерности процесса окклюзии, используя в качестве основного примера окклюзию водорода цирконием. Эта система была многосторонне изучена авторами этой главы [26—29], а также другими исследователями [17, 56, 58, 63]. [c.202]

    В главах II—VI рассмотрены самые разнообразные случаи взаимодействия переходных металлов с водородом, начиная с образования гидридов стехиометрического состава, таких как иНз и СеНг, гидридных фаз переменного состава, характерных, например, для металлов подгруппы титана и ванадия, и, наконец, растворов водорода, подчиняющихся закону квадратного корня Сивертса для металлов VIII, 1Ь, и ИЬ групп. [c.159]


    В цикле работ Ю. И. Ермакова с сотр. [45—48] по исследованию реакции гидрогенолиза алканов изучены каталитические системы, полученные взаимодействием металлорганических соединений переходных металлов с поверхностью носителей. В частности исследован гидрогенолиз этана и неопентана на следующих металлах, нанесенных на 5102 Р1, Р1, Мо—Р1, Рд, У—Р(1, Мо—Рс1. Приготовление этих катализаторов включает две стадии 1) закрепление на поверхности носителя ионов Ш или Мо 2) нанесение металл-органпческих соединений Р1 или Р(1 с последующим их восстановлением. Найдено [45], что при гидрогенолизе этана активность Р1-ка- [c.96]

    Экспериментальные результаты, полученные при изучении этой реакции, являются прямым доказательством того, что растущая полимерная цепь образует с переходным металлом л-аллильный комплекс. Постоянство константы спин-спинового взаимодействия /а г = 13Гц свидетельствует о сохранении на протяжении всего процесса полимеризации сын-конфигурации концевого звена растущей полимерной цепи, что хорошо соответствует транс-1,4-структуре звеньев образующихся полибутадиенов. [c.117]

    Как было показано выше, вклад я-аллильного лиганда в дативное связывание с металлом невелик и устойчивость этих комплексов обусловлена в основном донорно-акцепторным взаимодейст вием [61]. Из всех трех атомов углерода л-аллильного лиганда лишь центральный углеродный атом участвует только в донорно-акцепторном взаимодействии с переходным металлом [83]. Исходя из этого, увеличение электронодонорной силы заместителей в л-аллильных лигандах, особенно у среднего углеродного атома, должно способствовать упрочнению связи л-аллильный лиганд — металл. Относительная реакционная способность 2-алкил-1,3-бута-диенов при взаимодействии с (С407Ы11)2, а также активность аддуктов 1 1 в последующих реакциях присоединения к соответствующему 1,3-диену подтверждают этот вывод. Из кинетических кривых образования аддуктов 1 1 (С4В7Н11)2 с диеновыми углеводородами (рис. 9) видно, что активность диенов увеличивается в ряду  [c.125]

    Образование активного центра включает две основные последовательные реакции окислительно-восстановительное взаимодействие соединения переходного металла и алюминийалкила и присоединение мономера к образованному комплексу. Так как процесс сополимеризации проводится на гомогенных или псевдогомо-генных каталитических системах, а определяющим во второй реакции является взаимодействие комплекса с этиленом, скорость которого тоже достаточно велика, то можно считать, что образование активного центра протекает мгновенно [14], а их число прямо пропорционально числу молекул переходного металла [16, с. 46—68]. [c.298]

    С середины 1950-х гг. для поли.меризацни олефиновых и диеновых углеводородов стали широко применяться катализаторы Циглера— Натта, образующиеся при взаимодействии алюминийорганических соединений с соединениями переходных металлов. Каталитические системы на основе алюминийорганических соединений явились высокоэффективными катализаторами и для полимеризации изобутилена. [c.331]

    Аналогично ведут себя в поле катионов некоторых переходных металлов и другие полярные или легко поляризующиеся молекулы, способные проявлять протондонорные свойства — Н2О, NH20И, органические амины. Выступая в качестве лигандов, они способны к отн еплепию протона в водных растворах и с точки зрения протонной теории кислот и оснований (стр. 245) ведут себя как кислоты. Например, взаимодействие гидратированного иона меди с водой следует записать так  [c.604]

    Альтернативным подходом (имеющим несколько преимуществ) к параметризации спектров комплексов переходных металлов может служить модель углового перекрывания [3, 46]. Эта модель исходит из приближенного подхода к энергиям соединений переходных металлов в рамках метода МО. В первую очередь мы рассмотрим простой монокоорди-национный комплекс М—L. Если М — переходный металл, нас больще всего интересуют энергии ii-орбиталей комплекса. Пять iZ-орби-талей комплекса симметрии С охватывают а-, я- и 5-представления, т. е. d(z ] — это ст-представление, d(xK-) и d(yz) — я-представление, а d xy) и d x —y ) — 5-представление. Рассматривая, например, ст-взаимодействие, мы можем записать секулярные уравнения [c.111]


Смотреть страницы где упоминается термин Взаимодействие РЗЭ с переходными металлами: [c.276]    [c.276]    [c.177]    [c.268]    [c.270]    [c.15]    [c.79]    [c.90]    [c.36]    [c.88]    [c.105]    [c.205]   
Интерметаллические соединения редкоземельных металлов (1974) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы переходные

взаимодействие с металлами



© 2024 chem21.info Реклама на сайте