Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюконеогенез из пирувата

Рис. 20.7. Схема регуляторных механизмов ряда процессов углеводного обмена млекопитающих реакции катаболизма (гликогенолиз, гликолиз, окислительное декарбоксилирование пирувата, цикл ТКК) — сплошные линии реакции анаболизма (глюконеогенез, синтез гликогена) — пунктирные линии. Активация ферментов (+) ингибирование (-). Главные регуляторные ферменты (Т) — гликогенфосфорилаза ( ) — фосфофруктокиназа (з) — пируватдекарбоксилаза (7)— изоцитратдегидрогеназа ( - пируваткарбоксилаза — гликогенсинтаза Рис. 20.7. Схема <a href="/info/1320858">регуляторных механизмов</a> <a href="/info/1463494">ряда процессов</a> <a href="/info/1302637">углеводного обмена</a> <a href="/info/1859601">млекопитающих реакции</a> катаболизма (гликогенолиз, гликолиз, <a href="/info/187911">окислительное декарбоксилирование пирувата</a>, цикл ТКК) — сплошные <a href="/info/250473">линии реакции</a> анаболизма (глюконеогенез, синтез гликогена) — пунктирные линии. <a href="/info/96997">Активация ферментов</a> (+) ингибирование (-). Главные <a href="/info/567187">регуляторные ферменты</a> (Т) — гликогенфосфорилаза ( ) — фосфофруктокиназа (з) — пируватдекарбоксилаза (7)— изоцитратдегидрогеназа ( - пируваткарбоксилаза — гликогенсинтаза

Таблица 20-1. Последовательные реакции глюконеогенеза, ведущие от пирувата к глюкозе Таблица 20-1. <a href="/info/2829">Последовательные реакции</a> глюконеогенеза, ведущие от пирувата к глюкозе
    Гликогенные и кетогенные аминокислоты. К гликогенным аминокислотам относятся те аминокислоты, при катаболизме которых образуются непосредственные предшественники глюкозы, вовлекаемые в процесс глюконеогенеза — пируват, оксалоацетат, фосфоеноилпируват (таких аминокислот 14), либо в жиры (кетогенные, одна аминокислота), либо и в углеводы, и в жиры (гликогенные и кетогенные, 5 аминокислот). Таким образом, классификация [c.378]

    Получены доказательства синтеза глюкозы из большинства аминокислот. Для некоторых аминокислот (аланин, аспарагиновая и глутаминовая кислоты) связь с глюконеогенезом является непосредственной, для других она осуществляется через побочные метаболические пути. Следует особо подчеркнуть, что три а-кетокислоты (пируват, оксалоацетат и кето-глутарат), образующиеся соответственно из аланина, аспартата и глутамата, не только служат исходным материалом для синтеза глюкозы, но являются своеобразными кофакторами при распаде ацетильных остатков всех классов пищевых веществ в цикле Кребса для получения энергии. [c.547]

Рис. 10.7. Гликолиз и глюконеогенез. Красными стрелками указаны обходные пути глюконеогенеза ири биосинтезе глюкозы из пирувата и лактата цифры в кружках обозначают соответствующую стадию гликолиза. Рис. 10.7. Гликолиз и глюконеогенез. Красными стрелками указаны <a href="/info/567123">обходные пути</a> глюконеогенеза ири <a href="/info/98816">биосинтезе глюкозы</a> из пирувата и лактата цифры в кружках обозначают соответствующую стадию гликолиза.
Таблица 20.1. Механизм обходного пути фосфорилирования пирувата в процессе глюконеогенеза Таблица 20.1. Механизм <a href="/info/567123">обходного пути</a> фосфорилирования пирувата в процессе глюконеогенеза
    На рис. 10.7 представлены обходные реакции глюконеогенеза при биосинтезе глюкозы из пирувата и лактата. [c.341]


    Химизм реакции обходного пути фосфорилирования пирувата приведен в табл. 20.1. Первая необратимая реакция глюконеогенеза катализируется мита-хондриальной пируваткарбоксилазой, которая содержит в качестве кофермента витамин Н (биотин). В митохондриях этот фермент катализирует АТФ-зави-симую реакцию карбоксилирования пирувата, в ходе которой образуется оксалоацетат. Для оксалоацетата внутренняя мембрана митохондрий непроницаема, и транспорт его в цитоплазму происходит с помощью малатного челночного механизма. Митохондриальная малатдегидрогеназа восстанавливает оксалоацетат до малата, который может выходить в цитоплазму. Затем уже цитоплазматическая малатдегидрогеназа окисляет малат до оксалоацетата для последующего участия в реакции, катализируемой фосфоеноилпируваткарбоксики- [c.273]

    Печень участвует также в метаболизме аминокислот, поступающих время от времени из периферических тканей. Спустя несколько часов после каждого приема пищи из мышц в печень поступает аланин в печени он подвергается дезаминированию, а образующийся пируват в результате глюконеогенеза превращается в глюкозу крови (разд. 19.12). Глюкоза возвращается в скелетные мышцы для восполнения в них запасов гликогена. Одна из функций этого циклического процесса, называемого циклом глюкоза-аланин, состоит в том, что он смягчает колебания уровня глюкозы в крови в период между приемами пищи. Сразу после переваривания и всасывания углеводов пищи, а также после превращения части гликогена печени в глюкозу в кровь поступает достаточное количество глюкозы. Но в период, предшествующий очередному приему пищи, происходит частичный распад мышечных белков до аминокислот, которые путем переаминирования передают свои аминогруппы на продукт гликолиза пируват с образованием аланина. Таким образом, в виде аланина в печень доставляется и пируват, и КНз. В печени аланин подвергается дезаминированию, образующийся пируват превращается в глюкозу, поступающую в кровь, а КНз включается в состав мочевины и выводится из организма. Возникший в мышцах дефицит аминокислот в дальнейшем после еды восполняется за счет всасываемых аминокислот пищи. [c.754]

    При усилении гликолиза происходит накопление пирувата и лактата в крови, что сопровождается обычно изменением кислотно-основного равновесия, уменьшением щелочных резервов крови. Увеличение содержания лактата и пирувата в крови может наблюдаться также при поражениях паренхимы печени (поздние стадии гепатита, цирроз печени и т.п.) в результате торможения процессов глюконеогенеза в печени. [c.362]

    Регуляторным ферментом в глюконеогенезе является пируваткарбоксилаза, катализирующая первую необратимую реакцию этого процесса. Положительным аллостерическим эффектором фермента (активатором) является ацетил-КоА. Поэтому биосинтез глюкозы происходит тогда, когда в митохондриях накапливается больше ацетил-КоА, чем требуется для ЦТК. Кроме того, ацетил-КоА является ингибитором пируватдегидрогеназного комплекса, т. е. замедляет окисление пирувата и способствует биосинтетическому превращению его в глюкозу. [c.276]

    Глюконеогенез —синтез глюкозы из неуглеводных продуктов. Такими продуктами или метаболитами являются в первую очередь молочная и пировиноградная кислоты, так называемые гликогенные аминокислоты, глицерол и ряд других соединений. Иными словами, предшественниками глюкозы в глюконеогенезе может быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла трикарбоновых кислот .  [c.338]

    При гликолизе глюкоза превращается в пируват, при глюконеогенезе пируват превращается в глюкозу. Однако глюконеогенез -это отнюдь не обращение гликолиза. Он должен идти по иному пути, поскольку термодинамическое равновесие гликолиза сдвинуто далеко в сторону образования пирувата. В обычных условиях, существующих в клетках, фактическое значение AG для образования пирувата из глюкозы составляет около — 20 ккал/моль (разд. 12.9). Уменьшение свободной энергии при гликолизе происходит в основном на трех необратимых стадиях, катализируемых гексокиназой, фосфофруктокиназой и пируваткиназой. [c.106]

    Синтез незаменимых аминокислот из продуктов обмена углеводов и жиров в организме животных отсутствует. Клетки животных не содержат ферментных систем, катализирующих синтез углеродных скелетов этих аминокислот. В то же время организм может нормально развиваться исключительно при белковом питании, что также свидетельствует о возможности синтеза углеводов из белков. Процесс синтеза углеводов из аминокислот получил название глюконеогенеза. Он доказан прямым путем в опытах на животных с экспериментальным диабетом более 50% введенного белка превращается в глюкозу. Как известно, при диабете организм теряет способность утилизировать глюкозу, и энергетические потребности покрываются за счет окисления аминокислот и жирных кислот. Доказано также, что исходными субстратами для глюконеогенеза являются те аминокислоты, распад которых сопровождается образованием прямо или опосредованно пировиноградной кислоты (например, аланин, серин, треонин и цистеин). Более того, имеются доказательства существования в организме своеобразного циклического процесса—глюкозо-аланинового цикла, участвующего в тонкой регуляции концентрации глюкозы в крови в тех условиях, когда в период между приемами пищи организм испытывает дефицит глюкозы. Источниками пирувата при этом являются указанные аминокислоты, образующиеся в мышцах при распаде белков и поступающие в печень, в которой они подвергаются дезаминированию. Образовавшийся аммиак в печени обезвреживается, участвуя в синтезе мочевины, которая выделяется из организма. Дефицит мышечных белков затем восполняется за счет поступления аминокислот пищи. [c.548]


    Я. к.- один из важных промежут. продуктов обмена в-в в живых организмах. Участвует в обмене в-в в ввде малага, образующегося в трикарбоновых иислот цикле, глиоксилат-ном цикле, при глюконеогенезе. В результате ферментативных р-ций малат может превращаться в оксалоацетат, фумарат, пируват. [c.512]

    Подобно тому как гликолиз представляет собой центральный путь катаболизма глюкозы, в процессе которого она распадается до двух молекул пирувата, превращение последних в глюкозу составляет центральный путь глюконеогенеза. Таким образом, глюконеогенез в основном протекает по тому же пути, что и гликолиз, но в обратном направлении. Однако три реакции гликолиза [(1), (3) и (10)] необратимы, и в обход этих реакций в глюконеогенезе протекают другие реакции с иной стехиометрией, катализируемые другими фермента- [c.272]

    СИТ название глюконеогенеза, является важной составной частью цикла Кори (гл. 9, разд. Е). Она может быть использована организмом для превращения пирувата, образующегося в результате дезаминирования аланина или серина (гл. 14), в углеводы. [c.482]

    Таким образом, критическим фактором в регуляции этого фермента, так же как и многих других ферментов, участвующих в процессах гликолиза и глюконеогенеза, является стадия фосфорилирования адениловой системы. Имеются основания считать, что эту первую и наиболее важную стадию гликолиза включает АМР. Состояние адениловой системы оказывает влияние также на последующие стадии при гликолизе и в цикле трикарбоновых кислот. Таким образом, уменьшение концентрации АТР вызывает ингибирование процесса окисления пирувата и изоцитрата. Кроме того, в начальной стадии фосфоролиза гликогена и при окислении триозофосфатов необходимо наличие неорганического фосфата. Следовательно, быстрое потребление АТР клеткой (например, при мышечном сокращении) приводит к уменьшению концентрации АТР и увеличению концентрации АМР и Pi. Все эти изменения активируют процесс гликолиза. Однако, если мышечная активность прекращается и содержание АТР возрастает, наблюдается ингибирование сразу нескольких стадий гликолиза (рис. 11-11). [c.511]

    Регуляция глюконеогенеза. Важным моментом в регуляции глюконеогенеза является реакция, катализируемая пируваткарбоксилазой. Роль положительного аллостерического модулятора этого фермента выполняет ацетил-КоА. В отсутствие ацетил-КоА фермент почти полностью лишен активности. Когда в клетке накапливается митохондриальный ацетил-КоА, биосинтез глюкозы из пирувата усиливается. Известно, что ацетил-КоА одновременно является отрицательным модулятором пируватдегидрогеназного комплекса (см. далее). Следовательно, накопление ацетил-КоА замедляет окислительное декарбоксилирование пирувата, что также способствует превращению последнего в глюкозу. [c.341]

    Большинство стадий глюконеогенеза представляет собой обращение реакции гликолиза. Только 3 реакции гликолиза (гексокиназная, фосфофруктокиназная и иируваткиназная) необратимы, поэтому в процесс глюконеогенеза на 3 этапах используются другие ферменты. Рассмотрим путь синтеза глюкозы из пирувата. [c.338]

    Функциональное значение трансаминирования в различных тканях неодинаково. Так, значительная часть азота аминокислот работающей мыщцы приходится на аланин, который синтезируется путем трансаминирования пирувата, образующегося из глюкозы, затем он поступает в кровь и поглощается печенью, где вновь в процессе непрямого дезаминирования превращается в пируват, который вовлекается в процесс глюконеогенеза, а аминогруппа утилизируется в печени с образованием мочевины. Таким образом, аланин, по-видимому, в плазме крови является главной транспортной формой азота, а в печени служит ключевым предщественником глюкозы белкового происхождения (рис. 24.6). [c.378]

    Подобно тому как превращение глюкозы в пируват представляет собой центральный путь в катаболизме углеводов, превращение пирувата в глюкозу является центральным путем глюконеогенеза. Пути эти не идентичны, хотя и включают ряд общих этапов (рис. 20-2). Семь ферментативных реакций гликолиза свойственны также и глюконеогенезу все они легко обратимы. [c.602]

    Действие глюкокортикоидов приводит в конечном счете к увеличению количества глюкозы, извлекаемой из печени (из-за повышения активности глюкозо-6-фосфатазы), к повышению содержания глюкозы в крови и гликогена в печени, а также к уменьшению количества синтезируемых мукополисахаридов. Процессы включения аминокислот, образующихся в результате распада белков, замедляются, а синтезы ферментов, катализирующих процессы распада белков, усиливаются. Среди этих ферментов тирозин- и аланинаминотрансферазы — ферменты, инициирующие процессы распада аминокислот и обеспечивающие в конечном счете образование фумарата и пирувата — предшественников глюкозы при глюконеогенезе. [c.515]

    Роль окислительного фосфорилирования в глюконеогенезе. Возможен ли реальный синтез глюкозы из пирувата в условиях, когда цикл лимонной кислоты и окислительное фосфорилирование полностью ингибированы  [c.618]

    A. Использование в качестве субстратов глюконеогенеза пирувата и лактата предотвра-шает повышение концентрации протонов. [c.154]

    Реакции глюконеогенеза пируват оксалоацетат фосфоенолпируват, однако, могут протекать при любых состояниях организма. Это объясняется необходимостью поддерживать концентрацию оксалоацетата на определенном уровне, потому что оксалоаце- [c.157]

    В регуляции I цикла основная роль принадлежит пируваткиназе, фосфорилированная форма которой неактивна, а дефосфорилированная — активна (рис. 9.31). Следовательно, гликолитическая реакция ФЕП пируват ускоряется при пищеварении и замедляется в постабсорбтивном состоянии. Что касается реакций этого цикла, связанных с глюконеогенезом (пируват оксалоацетат ФЕП), то, по всей вероятности, они с определенной скоростью происходят при любых состояниях. Это может быть связано с необходимостью поддержания в клетке определенной концентрации оксалоацетата, поскольку он участвует во многих важных процессах, включая цитратный цикл. [c.274]

    РИС. 11-11. Сопряженные друг с другом пути гликолиза, глюконеогенеза и окисления жирных кислот, а также синтезов с указанием некоторых способов регуляции (—") — реакции гликолиза и окисления, протекающие через цикл трикарбоновых кислот. Сплошные жирные стрелки указывают путь углерода от гликогена (верхний правый угол) к СОг. ( ->)—биосинтетические пути. Прерывистые жирные стрелки означают глюко-неогенезный путь от пирувата через оксалоацетат и малат. [c.512]

    Глюконеогенез в печени сильно ускоряется глюкагоном и адреналином. Эффекты, вызываемые циклическим АМР, могут включать стимуляцию фруктозо-1,6-дифосфатазы и ингибирование фосфофруктокина-зы [46]. Влияние на взаимодействие между пируватом и РЕР, которое также имеет место, может быть непрямым и состоять в стимуляции а-кетоглутаратного метаболизма. [c.513]

    После того как в мыщцах истощается запас гликогена, основным источником пирувата становятся аминокислоты, образующиеся после деградации белков. При этом более 30% аминокислот, поступающих из крови в печень, приходится на аланин — одну из гликогенных аминокислот, углеродный скелет которой используется в печени как предшественник для синтеза глюкозы. Механизм превращения мышечных аминокислот в аланин, схема его участия в глюконеогенезе представлены в гл. 24. Другим источником пирувата является лактат, который накапливается в интенсивно работающих мышцах в процессе анаэробного гликолиза, когда митохондрии не успевают реокислить накапливающийся НАДН. Лактат транспортируется в печень, где снова превращается в пируват, а затем в глюкозу и гликоген. Этот физиологический цикл (рис. 20.2) называют циклом Кори (по имени его первооткрывателя). У цикла Кори две функции — сберечь лактат для последующего синтеза глюкозы в печени и предотвратить развитие ацидоза. [c.273]

    Превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат. Фосфоенолпируват, образовавшийся из пирувата, в результате ряда обратимых реакций гликолиза превращается во фруктозо-1,6-бисфосфат. Далее следует фосфофруктокиназная реакция, которая необратима. Глюконеогенез идет в обход этой эндергонической реакции. Превращение фруктозо-1,6-бис-фосфата во фруктозо-6-фосфат катализируется специфической фосфатазой  [c.340]

    Исследование других реакций конструктивного метаболизма архебактерий, как правило, обнаруживает пути, функционирующие у эубактерий. Так, глюконеогенез, начиная с пирувата, вдет по тому же механизму, что у эубактерий. Ассимиляция аммония, синтез изопреновдных липвдов, нуклеотидов происходит по обычным для эубактерий путям. [c.415]

    Обходный путь требуется для превращения пирувата в фос фоенолпируват. . . . . Второй обходный путь в ГЛЮ конеогенезе-это превращение фруктозо-1,6-дифосфата во фрук-тозо-6-фосфат. . . . . Третий обходный путь-это путь, ведущий от глюкозо-6-фосфата к свободной глюкозе. . . . Глюконеогенез требует значительных затрат энергии. . . Реципрокная регуляция глюконеогенеза и гликолиза. . , . Промежуточные продукты цикла лимонной кислоты являются также предшественниками глюкозы. ........ [c.729]

    Первая обходная реакция в глюконеогенезе-это превращение пирувата в фосфоенолпируват (рис. 20-2). Она не может быть простым обращением пируваткиназной реакции (разд. 15.7,д). [c.603]

    Глюконеогенез ЭТО образование нового сахара из неуглеводных предшественников, среди которых наибольшее значение имеют пируват, лактат, промежуточные продукты цикла лимонной кислоты и многие аминокислоты. Подобно всем прочим биосинтетическим путям, ферментативный путь глюконеогенеза не идентичен соответствующему катаболическому пути, регулируется независимо от него и требует расхода химической энергии в форме АТР. Синтез глюкозы из пирувата происходит у позвоночных главным образом в печени и отчасти в почках. На этом биосинтетическом пути используются семь ферментов, участвующих в гликолизе они функционируют обратимо и присутствуют в большом избытке. Однако на гликолитическом пути, т. е. на пути вниз , имеются также три необратимые стадии, которые не могут использоваться в глюконеогенезе. В этих пунктах глюконеогенез идет в обход гликолитического пути, за счет других реакций, катализируемых другими ферментами. Первый обходный путь-это превращение пирувата в фосфоенолпируват через оксалоацетат второй-это дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, и, наконец, третий обходный путь-это дефосфорилирование глюкозо-6-фосфата, катализируемое глюкозо-6-фосфатазой. На каждую молекулу D-глюкозы, образующуюся из пирувата, расходуются концевые фосфатные группы четырех молекул АТР и двух молекул GTP. Регулируется глюконеогенез через две главные стадии 1) карбоксилирование пирувата, катализируемое пируваткарбоксилазой, которая активируется аллостерическим эффектором ацетил-СоА, и 2) дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, которая ингибируется АМР и активируется цитратом. По три атома углерода от каждо- [c.617]

    Таким образом, синтез глюкозы из пирувата обходится организму довольно дорого. Однако немалая часть этой платы расходуется лищь на то, чтобы обеспечить необратимость глюконеогенеза. В условиях, существующих в клетке, в которых величина AG для АТР может достигать 16 ккал/моль (разд. 14.10), общее изменение свободной энергии в процессе гликолиза составляет по меньщей мере — 15 ккал/моль. В тех же условиях общее [c.606]

    На рис. 20-2 указаны регуляторные пункты глюконеогенеза и гликолиза. Первым таким пунктом в глюконеогенезе является реакция, катализируемая регуляторным ферментом пируваткарбоксилазой. Этот фермент практическч неактивен в отсутствие ацетил-СоА, который играет роль его положительного аллостерического модулятора. Поэтому биосинтез глюкозы из пирувата усиливается всякий раз, когда в клетке накапливается больше митохондриального ацетил-СоА чем ей в данный момент требуется в качестве топлива для цикла лимонной кислоты. Поскольку ацетил-СоА служит вместе с тем также отрицательным, или ингибирующим, модулятором пируват- [c.606]

    Вторым регуляторным пунктом глюконеогенеза служит реакция, катализируемая фруктозодифосфатазой, ферментом, на который резкое ингибирующее действие оказывает АМР. Так как соответствующий фермент гликолитического пути, фосфофруктокиназа, активируется АМР и ADP, а ингибируется цитратом и АТР (разд. 15.3), два этих противоположно направленных этапа глюконеогенеза и гликолиза регулируются координированным образом, реципрокно. Всякий раз, когда для цикла лимонной кислоты имеется достаточно топлива (либо в виде ацетил-СоА, либо в виде цитрата-первого промежуточного продукта этого цикла) или когда клетка полностью обеспечена АТР, условия благоприятствуют биосинтетическому пути, т. е. образованию глюкозы из пирувата, а следовательно, и запасанию глюкозы в форме гликогена. [c.607]

    Запасы гликогена в мышцах, однако, невелики, и потому существует верхний предел того количества энергии, которое вырабатывается в ходе гликолиза, в условиях максимальной (например, при спринте) нагрузки. Более того, накопление молочной кислоты и связанное с этим снижение pH, а также повышение температуры, происходящее при очень высокой мышечной активности, снижают эффективность обмена в мыпщах. Так, в период восстановления после максимальной мышечной нагрузки атлет продолжает еще некоторое время тяжело дышать. Потребляемый при этом дополнительный кислород используется для окисления пирувата, лактата и других субстратов, а также регенерации АТР и фосфокреатина в мышцах. Одновременно лактат крови превращается в печени путем глюконеогенеза в поступающую в кровь глюкозу, которая попадает [c.757]

    Внимательный читатель, рассматривая пути гликолиза и глюконеогенеза, представленные на рис. 20-2, неизбежно должен задать себе один очень непростой вопрос. На этих противоположно направленных метаболических путях между глюкозой и пируватом имеются три пункта, в которых ферментативные реакции катаболического направления заменены в анаболическом пути другими, обходными реакциями. Фосфофруктокиназа, например, катализирует фосфорилирование фруктозо-6-фосфата за счет АТР, а в глюконеогенезе ей соответствует фруктозодифосфатаза, катализирующая обходную реакцию-гидролиз фруктозо-1,6-дифосфата, в результате которого и образуется фруктозо-6-фосфат. Запишем эти две противоположно направленные реакции  [c.611]

    Путь СОг в глюконеогенезе. В первой обходной реакции глюконеогенеза-превращении пирувата в фосфоенолпируват-сначала под действием пируваткарбокси-лазы пируват карбоксилируется с образованием оксалоацетата, а затем оксалоацетат декарбоксилируется до фосфоенолпирувата в реакции, катализируемой фосфоенолпируват-карбоксикиназой. Поскольку за присоединением СОг непосредственно следует ее отщепление, можно было бы думать, что из [c.619]


Смотреть страницы где упоминается термин Глюконеогенез из пирувата: [c.484]    [c.434]    [c.372]    [c.417]    [c.271]    [c.272]    [c.445]    [c.602]    [c.606]    [c.607]   
Метаболические пути (1973) -- [ c.53 ]




ПОИСК







© 2025 chem21.info Реклама на сайте