Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Навье-Стокса дифференциальное

    Частные случаи общего дифференциального уравнения переноса (4.0), отражают линейные законы переноса импульса (Навье-Стокса для вязкой жидкости), массы (Фика для диффузии) и энергии (Фурье). Ко.эффициенты пропорциональности в этих уравнениях известны как динамический [c.150]

    Трудности математического характера, так как частные дифференциальные уравнения очень сложны по своей структуре. Например, уравнение Навье — Стокса для импульсного потока в своей полной форме [см. последнее уравнение системы (6-50)] не интегрируется. Следовательно, для его решения необходимо ввести упрощения. Как будет показано ниже, в качестве решения уравнения Навье — Стокса в простейшем случае можно получить хорошо известное из практики уравнение Гагена — Пуазейля. [c.81]


    Таким образом, становится понятным, почему важное значение приобретают методы, которые позволяют привести дифференциальные уравнения, описывающие процесс, к зависимостям безразмерных комплексов величин . Перед описанием этих методов остановимся на решении основного уравнения потока, т. е. уравнения Навье — Стокса, для простейшего случая. [c.81]

    Подстановка этих разложений в уравнения Навье—Стокса приводит к системе дифференциальных уравнений для if-n и ifn. Однако каждое из разложений удовлетворяет только одной системе граничных условий условию прилипания на поверхности тела для внутреннего разложения и условию v = v на бесконечности для внешнего разложения. Так как внутреннее и внешнее разложения являются различными формами представления одной и той же функции тока, допускается существование области перекрытия [c.248]

    Движение вязкой среды описывается системой дифференциальных уравнений, известной под названием уравнений Навье — Стокса. [c.64]

    Дифференциальные уравнения движения Навье—Стокса [c.52]

    Условия и теоремы подобия. Подобное преобразование дифференциальных уравнений. Один из основных принципов теории подобия заключается в выделении из класса явлений группы подобных явлений. Например, такие разные, на первый взгляд, явления, как движение окружающего нас атмосферного воздуха и движение капельной жидкости по трубопроводу в основе своей однородны, так как по существу представляют собой перемещение вязкой жидкости под действием разности давлений поэтому данные явления описываются едиными уравнениями Навье—Стокса и принадлежат к одному классу. Вместе с тем движение вязких жидкостей (капельных и упругих) через трубы и аппараты различного профиля и размера составляет группу подобных явлений, входящую в этот класс. [c.66]

    Подобное преобразование уравнений Навье—Стокса. Основные критерии гидродинамического подобия. Выше уже отмечалось, что дифференциальные уравнения Навье—Стокса невозможно решить для большинства практически важных случаев. [c.78]

    Допустим, что дифференциальные уравнения, описывающие процесс (уравнения Навье—Стокса), отсутствуют. Известно лишь, что при установившемся движении жидкости по прямой трубе перепад давлений Ар зависит от скорости жидкости ш, ее плотности р и вязкости ц, ускорения силы тяжести длины трубы / и ее эквивалентного диаметра с1. . [c.83]


    Таким образом, при правильном выборе величин, входящих в исходную функцию, метод анализа размерностей позволяет (не имея полного математического описания процесса) получить ту же конечную обобщенную зависимость, которая может быть выведена подобным преобразованием дифференциальных уравнений Навье—Стокса. [c.84]

    Моделирование процесса перемешивания. В соответствии с положениями теории подобия (глава И) основой для гидродинамического моделирования процессов перемешивания являются критериальные уравнения (VI, 1) и (VI,2), полученные путем подобного преобразования дифференциальных уравнений Навье—Стокса. При этом в связи со сложностью явления возможно получение различных соотношений между величинами, определяющими протекание процесса в натуре и модели, в зависимости от того, по какому из параметров процесса происходит моделирование. [c.253]

    В дифференциальном уравнении конвективной диффузии, помимо концентрации, переменной является скорость потока. Поэтому данное уравнение надо рассматривать совместно с дифференциальными уравнениями гидродинамики уравнениями Навье—Стокса и уравнением неразрывности потока. Однако эта система уравнений не имеет аналитического решения, и для получения расчетных зависимостей по массообмену приходится прибегать к преобразованию дифференциального уравнения конвективной диффузии методами теории подобия. [c.394]

    Пользуясь формулами (6), (17), (19) и (23), можно в дифференциальных уравнениях (14), с учетом т] = О, т. е. о = —р, заменить напряжения скоростями деформаций. При этом мы получим так называемые дифференциальные уравнения движения вязкой жидкости Навье — Стокса. [c.68]

    В вязкой жидкости имеет место прилипание частиц жидкости к стенкам, ограничивающим течение, поэтому при интегрировании дифференциальных уравнений Навье — Стокса нужно использовать в качестве граничного условия равенство нулю скорости течения у стенки (W = 0). [c.69]

    Скорость движения среды вблизи интересующей нас поверхности раздела фаз является функцией координат. У несжимаемых сред (жидкостей), а также у сжимаемых (газов) при небольших градиентах давления, она определяется системой дифференциальных уравнений Навье — Стокса [c.278]

    Теория подобия - обобщение результатов эксперимента простых объектов на более сложные. Используют, если теоретическая модель сформирована (обычно системы сложных дифференциальных уравнений, например, Навье - Стокса), а аналитического или численного решения получить не удается - обычная практика до середины 50-х гг., до появления ЭВМ. [c.6]

    К о р о б о в К. Я. Использование дифференциальных уравнений Навье-Стокса для решения задач теории фильтрации. Труды УНИ, вын. IV. Изд-во Недра , 1967. [c.62]

    Уравнения движения Навье—Стокса. Если рассматривается движение вязкой жидкости, то к действующим силам давления и тяжести прибавляются силы внутреннего трения, растяжения и сжатия и соответственно в дифференциальные уравнения (1—24). (1—24а) и (I—246) вводится дополнительный член, выражающий влияние этих сил. [c.42]

    Дифференциальные уравнения движения вязкой жидкости носят название уравнений Навье—Стокса и имеют следующий вид для оси X [c.42]

    Теория подобия позволяет представить дифференциальные уравнения Навье—Стокса в виде некоторой функции от критериев подобия. Эти критерии будут характеризовать силы, действующие при движении вязкой жидкости. [c.62]

    В случае идеальной жидкости уравнения Навье-Стокса (3.58) переходят в дифференциальные уравнения движения Эйлера  [c.58]

    Навье-Стокса (3.59) переходят в дифференциальные уравнения равновесия Эйлера  [c.59]

    Дифференциальные уравнения описывают целый класс однородных явлений (например, одним уравнением - Навье - Стокса - описываются такие разные, на первый взгляд, явления, как движение жидкости по трубопроводам и каналам и перемещение больших объемов океанической воды и атмосферного воздуха). Для практического использования этих уравнений следует при их решении учитывать ограничения, вытекающие из свойств конкретного явления (процесса). Для химико-технологических процессов такими ограничениями могут быть пределы изменений геометрических характеристик аппаратов, физических свойств веществ и т.п. Поэтому для выделения конкретного явления из класса явлений, описываемых единой системой дифференциальных уравнений, необходимо эти уравнения ограничить дополнительными условиями, которые называют условиями однозначности, т. е. условиями, которые полностью, однозначно характеризуют данное явление (например, температура насыщенного пара полностью, т.е. однозначно определяется его давлением). [c.63]

    Это дает основание использовать достаточно формальный, но более простой способ подобного преобразования дифференциальных уравнений, который заключается в следующем критерии подобия находят, деля одну часть уравнения на другую и отбрасывая знаки математических операторов. Например, для уравнения Навье-Стокса (3.56) такое преобразование сведется к следующему  [c.75]


    Отметим, что уравнение конвективной диффузии, поскольку процесс переноса массы протекает в потоке, должно быть дополнено уравнениями движения Навье-Стокса и неразрывности потока. Кроме того, перенос вещества приводит к изменению состава фаз и, следовательно, к изменению их физических свойств. Поэтому систему дифференциальных уравнений, описывающих конвективный массоперенос, следует дополнить также уравнениями, отражающими зависимость физических свойств фазы от ее состава. Расчет такой системы уравнений представляет большие трудности, и аналитическое решение этой системы уравнений оказывается практически целесообразным только в тех случаях, когда возможны существенные ее упрощения. Поэтому часто для решения этой задачи используют методы теории подобия. [c.21]

    Двойное интегрирование этого уравнения (с граничными условиями = О при г = Л и /йг = О при г = 0) позволяет прийти к распределению скоростей по сечению трубы. Здесь вполне удается справиться со сложностями решения дифференциального уравнения второго порядка в силу простоты (линейности) связей между основными параметрами течения (эти связи будут продемонстрированы ниже). Но по той же причине здесь вполне можно обойтись без уравнения Навье — Стокса, т.е. без решения дифференциальных уравнений второго порядка, существенно упростив анализ. Используем этот путь применительно к течению жидкости в круглой трубе. [c.146]

    Существенное сходство характерно и для дифференциальных уравнений переноса импульса (Навье — Стокса), теплоты (Фурье — Кирхгофа) и вещества (Фика), а также для условий однозначности к этим уравнениям. При этом в выражениях (а), [c.488]

    Для описания процессов переработки вязких жидкостей, к которым относят полимеры и эластомеры в текучем состоянии, используют известное дифференциальное уравнение Навье — Стокса, имеющее в векторной записи вид  [c.49]

    Процессы химической технологии часто сопровождаются изменением большого числа рабочих параметров (давления, скорости, температуры, вязкости, плотности, геометрических размеров и др.), взаимосвязь которых либо не поддается точному математическому описанию, либо приводит к трудно разрешимым дифференциальным уравнениям. Примером могут служить выведенные выше уравнения Навье—Стокса, решение которых возможно только в отдельных частных случаях. Это обстоятельство вынуждает к экспериментальному определению указанной взаимосвязи, осуществляемому обычно не на натурных объектах (аппаратах или машинах), а на их моделях. Однако чтобы полученные результаты опытов можно было распространить на натурные объекты, са.ма модель, а также направление и диапазон эксперимента должны удовлетворять определенным условиям. Эти условия устанавливает теория подобия они сводятся к тому, что между моделью и натурным объектом должно существовать подобие геометрических размеров, полей физических величин и свойств системы на ее границах. [c.42]

    Основой математического описания КГТС деталей машин (например,, абсолютно гладких цилиндров, показанных на рис. 5.5) служат дифференциальное уравнение движения жидкости Навье —Стокса и условие неразрывности установивши гося потока жидкости, следствием которых является известное уравнение Рейнольдса, относящееся к установившемуся плоскому потоку вязкой жидкости в узком клиновом зазоре между двумя плоскостями [c.235]

    Для расчета коэффициента массоотдачп, учитывающего влияние концснтрациоппой поляризации на перенос растворенного вещества к поверхности мембраны, предложен ряд уравнений (табл. IV. 1). Эти расчетные уравнения основываются на решениях дифференциальных уравнений Навье—Стокса (для ламинарного [149] и турбулентного [150] потоков в каналах с отсосом ) и конвективной диффузии [144, 151]. [c.175]

    Дифференциальные уравнения движения жидкости с учетом трения — уравнения Навье — Стокса. При учете сил трения в дифференциальное уравнение движения жидкости Эйлера необходимо ввести дополнительное слагаемое, которое получаем из уравнения Ньютона. Сила внутреннего трегн я То при одномерном двин<енни жидкости на единицу поверхности выражается по Ньютону, как [c.98]

    Рассмотрим канал ленточно-поточного типа, образованный пластинами с горизонтальными гофрами с углом при их вершине у = 90° продольное сечение канала представлено на рис. 7.4. Процесс стационарного конвективного теплообмена при ламинарном течении жидкости в таком канале описывается системой дифференциальных уравнений в частных производных, включающих уравнения Навье - Стокса, неразрывности и энергии. Допустим, что физические свойства жидкости не зависят от температуры (и = onst, а = onst, р = onst). Тогда для вынужденного двухмерного движения потока несжимаемой жидкости эта система уравнений имеет вид  [c.352]

    Дифференциальное уравнение (2.34) выведено для одномерного дви кеиия несжимаемой вязкой жидкости. Для случая трехмерного дви кения уравнение получается более сложным, но структура его сохраняется. Дифференциальное уравнение движения нес/кимаемой вязкой яшдкости называется уравнением Навье — Стокса. [c.44]

    При исследовании движения электропроводной жидкости в электрическом и магнитном полях приходится учитывать эти два новых воздействия, внося в уравнения движения и энергии соответствующие дополнительные члены. Это обстоятельство приводит к увеличению числа переменных и к необходимости соответствующего увеличения числа уравнений такими дополнительными уравнениями являются уравнения электродинамики Максвелла. Совокупность уравнений Максвелла, уравнений Навье — Стокса, в которые внесены электромагнитные объемные силы, уравнения энергии, включающего джоулево тепло, и уравнения состояния иредставляет собой систему дифференциальных уравнений магнитной гидрогазодинамики. [c.177]

    Фрязинов И. В. Конгорватпвпые разностные схемы для уравпений Навье — Стокса в переменных вихрь — функция тока — момепт вращения па нерегулярных треугольных сетках.— Дифференциальные уравнения, 1983, XIX, № 7. [c.263]

    Ураанение (7-3) вместе с уравнениями Навье — Стокса описывает температурное поле вязкого потока. Для обычных потоков числовые значения теплопроводности так малы, что кондуктивный перенос тепла становится заметным только в той области, где конвективный теплообмен мал из-за малых скоростей. Мы знаем, что такая область всегда существует около поверхности твердых тел, потому что там скорость потока уменьшается до нуля. Как следствие этого можно ожидать, что теплопроводность таких потоков следует рассматривать только вблизи твердых поверхностей. Другими словами, ожидается, что будет существовать тонкий слой, вдоль твердой поверхности, в котором теплопроводность равна по значению конвекции тепла, тогда как вне этого слоя перенос тепла теплопроводностью относительно так мал, что им можно пренебречь. Этот слой будет называться тепловым пограничным слоем. Теперь упростим дифференциальное уравнение, описывающее поток тепла в этом тепловом пограничном слое, путем учета порядка малости его членов. Рассуждения будут такими же, как и для гидродинамического пограничного слоя двухмерного потока. Соответственно этому членами в уравнениях (7-3) и (7-4), под которыми стоит нуль, пренебрегают. [c.217]

    Полученные в начале 1823 года дифференциальные уравнения Навье-Стокса, учитывающие вязкость и сжимаемость реальных жидкостей, открыли широкие возможности для дальнейшего развития теоретической гидромеханики, но оказались неприемлемыми при решении сложных практических вопросов гидравлики из-за возникающих при этом непреодолимых математических трудностей. Поэтому развитие гидравлики пошло своим экспериментальноаналитическим путем, основываясь на работах А. Шези (1718 - 1798), Ж. В. Буссинеска (1842 - 1929), Дюнюи, Дарси, Ю. Вейсбаха (1806 - 1871), П. Е. Жуковского и др. [c.1146]

    Уравнения (7), (8) и (9) образуют систему дифференциальных уравнений движения несжигаемой жидкости Навье — Стокса эта [c.350]


Смотреть страницы где упоминается термин Навье-Стокса дифференциальное: [c.83]    [c.136]   
Основные процессы и аппараты химической технологии Издание 6 (1955) -- [ c.278 , c.295 ]




ПОИСК





Смотрите так же термины и статьи:

Навитая

Навье

Навье Стокса

Стокса



© 2025 chem21.info Реклама на сайте