Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Миоглобин в молекуле

Рис. 20-25. Схематическое изображение молекулы миоглобина, которая является хранителем молекулы кислорода в мышечной ткани. Группа гема изображена в виде плоского диска, а атом железа-в виде шарика в ее центре. Буква в кружке указывает Рис. 20-25. <a href="/info/376711">Схематическое изображение</a> <a href="/info/154128">молекулы миоглобина</a>, которая является хранителем <a href="/info/6804">молекулы кислорода</a> в <a href="/info/613981">мышечной ткани</a>. <a href="/info/1415433">Группа гема</a> изображена в <a href="/info/1546989">виде плоского</a> диска, а <a href="/info/686925">атом железа</a>-в виде шарика в ее центре. Буква в кружке указывает

    При расшифровке третичной структуры белков решающую роль сыграл рентгенографический метод, который в 1957 г. позволил английскому исследователю Кендрью впервые определить третичную структуру миоглобина. В дальнейшем рентгеноструктурный анализ позволил установить пространственное строение многих других белков и связать его с их биологической функцией. Так, молекула лизоцима — фермента, расщепляющего полисахариды — имеет трехмерную структуру, показанную на рис. 67. Стрелкой показана впадина, представляющая собой активный центр фермента сюда подходит молекула полисахарида, подвергающегося расщеплению. [c.642]

    В белке волос и шерсти, а также других кератинах а-спирали многократно скручены друг с другом в многожильные тяжи, которые образуют видимые глазом нити. Цепи белков шелка вытянуты во всю длину (а не свернуты в спираль) и соединены с параллельными цепями водородными связями в листы, показанные на рис. 21-2,а. В глобулярных белках цепи не являются полностью вытянутыми или полностью свернутыми в а-спираль чтобы молекула имела компактную структуру, она должна быть надлежащим образом деформирована. В молекуле миоглобина (см. рис. 20-25) 153 аминокислоты белковой цепи свернуты в восемь витков а-спирали (обозначенные на рисунке буквами А-Н), которые в свою очередь свернуты так, что в результате получается компактная молекула. Витки Е и Р образуют карман, в котором помещается группа гема, и молекула кислорода может связываться с атомом железа этого гема. Подобным же образом построена молекула гемоглобина, которая состоит из четырех миоглобиновых единиц (см. рис. 20-26). Небольшой белок цитохром с (см. рис. 20-23) имеет меньше места для витков а-спирали. 103 аминокислоты этого белка свернуты вокруг его группы гема подобно кокону, оставляя к ней доступ только в одном месте. У более крупных ферментов, например трипсина (223 аминокислоты) и карбоксипептидазы (307 аминокислот) в центре молекулы имеются области, где белковая цепь делает ряд зигзагов, образуя несколько параллельных нитей, скрепленных водородными связями подобно тому, как это имеет место в молекуле шелка. [c.317]

Рис. 18.10. Белковая цепь с гем-группой в молекуле миоглобина (а) и координация миоглобином молекулы кислорода (б) [281 Рис. 18.10. <a href="/info/196653">Белковая цепь</a> с гем-группой в <a href="/info/154128">молекуле миоглобина</a> (а) и <a href="/info/696803">координация миоглобином</a> молекулы кислорода (б) [281

    Молекула гемоглобина человека, подобно гемоглобину других млекопитающих, состоит из четырех полипептидных цепей (каждая из которых содержит одну гем-группу) и способна обратимо присоединять четыре молекулы кислорода. Уже много лет назад было показано, что равновесное связывание кислорода гемоглобином описывается S-образной кривой, приведенной на рис. 15.12, которая отличается от аналогичной кривой для миоглобина. Для миоглобина, содержащего одну гем-группу в молекуле, следует ожидать кривую равновесия, отвечающую реакции [c.440]

    По измерению оптической активности рассчитывают степень спиральности (упорядоченности) молекулы. У пепсина, например, она равна 28%, а у миоглобина — 70%. [c.362]

    Гемоглобин представляет собой образование из четырех миоглобино-подобных молекул (рис. 20-26). Структуры молекул миоглобина и гемоглобина удалось установить лишь в последнее десятилетие методом дифракции рентгеновских лучей. Было показано, что четыре компонента- [c.261]

    Выше отмечалось, что развитие рентгеноструктурного анализа белков получило необходимый импульс в 1954 г., после того как Брэгг и Перутц впервые использовали метод изоморфного замещения для расчета знаков рефлексов в рентгенограммах гемоглобина [194]. Однако не гемоглобин оказался первым белком, трехмерная структура которого стала известной. Вследствие меньшего размера, а также благодаря более счастливому случаю с нахождением изоморфных производных и их кристаллизацией таким белком стал миоглобин. Молекула миоглобина состоит из 153 аминокислотных остатков (около 2500 атомов), образующих одну полипептидную цепь. К свернутой цепи прикреплена порфириновая плоская группа гема с атомом двухвалентного железа в центре, к которому и присоединяется молекула кислорода. Рентгеноструктурное изучение молекулы миоглобина, начатое Кендрью в 1948 г., проводилось в два этапа [198, 199]. Вначале в расчет было принято небольшое число рефлексов - несколько сотен. Этого оказалось достаточно для того, чтобы построить модель молекулы с низким разрешением. Такая модель с разрешением 6,0 А была получена в 1958 г. Кендрью и соавт. [200, 201], На ней нельзя было обнаружить не только отдельные атомы, но и боковые цепи аминокислотных остатков модель отражала конфигурацию полипептидной цепи и местоположение группы гема, содержащей атом железа. Это был первый случай, когда удалось получить, по существу, фотографию молекулы белка, правда, недостаточно четкую. [c.46]

    Многие ферменты, катализирующие окислительно-восстановительные реакции, содержат атомы железа. Примером могут служить цито-хромы, присутствующие в каждом живом организме. Они содержат гем-группы, связанные с белком иначе, чем в молекулах миоглобина и гемоглобина. Интересным является белок, содержащий негемовое железо (так называемый высокопотенциальный железосодержащий белок), выделенный из клеток нескольких видов пурпурных бактерий. Он может обратимо одноступенчато (путем потери одного электрона) окисляться ионом гексацианоферрат(П1) кислоты [Ре(СК)б] и другими окислителями и, вероятно, катализирует какие-то окислительные процессы, важные для физиологии бактерий. На рисунке, где приведена [c.443]

    Молекула миоглобина схематически изображена на рис. 20-25. Как и в цитохроме с, четыре из шести октаэдрических координационных положения вокруг атома железа заняты атомами азота, принадлежащими гему. Пятое положение занимает атом азота от гистидина. Однако в шестом положении лиганд отсутствует. В этом месте может координироваться молекула кислорода, указанная буквой XV в кружке. В миоглобине атом железа находится в состоянии окисления + 2. Если железо окисляется, молекула дезактивируется и место кислорода занимает молекула воды. [c.261]

    В период 1946—1960 гг. английскому ученому Дж. Д. Кендру и его сотрудникам удалось точно установить структуру глобулярного белка миоглобина. Миоглобин, обнаруженный в тканях мышц, представляет собой белок, очень похожий на гемоглобин, но имеющий только одну полипептидиую цепь в молекуле (молекулярный вес 17 ООО). Как показал рентгеноструктурный анализ кристаллов миоглобина, молекула этого белка содержит полипептидиую цепь, которая не вся является единой спиралью, а содержит восемь коротких сегментов, имеющих конформацию альфа-спирали, связанных неспиральными участками. Такая особенность трехмерной структуры полипептидной цепи — расположение в пространстве участков с правильной (повторяющейся) структурой (вторичной структурой) — называется третичной структурой белка. Третичная структура, как и вторичная, определяется последовательностью аминокислот (первичной структурой). [c.683]

    В результате Джон Кендрью очень скоро понял, что едва ли я помогу ему выяснить строение миоглобина. Ему не удавалось вырастить большие кристаллы миоглобина лошади, и он рассчитывал сначала, что у меня рука окажется счастливой. Но не требовалось особой проницательности, чтобы заметить, насколько неискусны мои лабораторные манипуляции. Недели через две после моего приезда в Кембридж мы отправились на местную бойню, чтобы получить сердце лошади для изготовления нового препарата миоглобина. Если бы нам повезло, то немедленное замораживание сердца бывшего скакуна воспрепятствовало бы повреждению молекул миоглобина, которое мешало кристаллизации. Однако и мои попытки кристаллизации оказались не более успешными, чем попытки Джона. Я даже почувствовал определенное облегчение если бы я добился успеха, Джон мог бы засадить меня за съемку рентгенограмм. [c.36]


    С другой стороны, считалось, что молекулярный вес ВТМ составляет около 40 миллионов, и поначалу казалось, что понять устройство ВТМ будет неизмеримо труднее, чем строение гораздо меньших молекул миоглобина и гемоглобина, над которыми Джон Кендрью и Макс Перутц бились много лет, так и не получив никаких интересных для биолога результатов. [c.67]

    Число аминокислотных остатков, входящих в молекулы, различно инсулин — 51, миоглобин — 140. Отсюда Мг,(.чтз = от 10 ООО до нескольких миллионов. [c.260]

    В 1962 г. М. Перутц и Дж. Кендрью (Кембриджский университет) были удостоены Нобелевской премии по химии за работу по установлению структуры гемоглобина и родственного ему миоглобина — молекулы, способной хранить кислород. На основании данных рентгеноструктурного анализа и зная аминокислотную последовательность (стр. 1050), они определили трехмерную структуру этих очень сложных молекул совершенно точно для миоглобина и почти точно для гемоглобина. Они установили, например, что молекула закручена в а-спираль на протяжении шестнадцати звеньев, начиная с концевого Ы-звена, после чего цепь поворачивает под прямым углом. Исследователи смогли даже сказать, почему она поворачивает в углу находится звено аспарагиновой кислоты, карбоксильная группа которой нарушает водород >ые связи, необходимые для продолжения спирали, что и приводит к изменению формы цепи. Четыре сложенные цепи гемоглобина образуют вместе сфероидную молекулу с размерами 64 А х 55 А х 50 А. Четыре плоские группы гема, каждая из которых содержит атом железа, способный связывать молекулу кислорода, укладываются в отдельных карманах в этой сфере. Когда переносится кислород, то цепи слегка смещаются, в результате чего эти карманы становятся немного меньше по размеру Перутц описал гемоглобин как дышащую молекулу . Эти карманы оторочены углеводородными остатками аминокислот подобное неполярное окружение предотвращает перенос электронов между кислоредом-и-ионом железа и допускает комплексеобразование, необходимое для переноса кислорода. [c.1061]

    При соединении гемоглобина с кислородом меняются не только свойства простетической группы, но и физические и химические свойства молекулы в целом. Ранее уже указывалось, что способность гемоглобина присоединять основания увеличивается при переходе гемоглобина в оксигемоглобин. Следствием этого является то, что артериальная и венозная кровь имеет почти одинаковую реакцию. Более высокое содержание угольной кислоты в венозной крови компенсируется более высокой кислотностью оксигемоглобина артериальной крови. Кривая образования оксигемоглобина в зависимости от давления кислорода [153] характеризуется особой, необычной для подобных процессов, сигмообразной формой (фиг. 41). Поскольку миоглобин, молекула ко- [c.246]

    Предполагается [23, 25], что дистальный гистидин изменяет способ ориентации молекулы кислорода относительно железо-порфири-нового кольца. Вместо равновесной перпендикулярной (точнее — под углом 120°) ориентации в миоглобине молекула Ог прижата дистальным гистидином параллельно плоскости гема. Расчеты показывают, что в первом случае Ре комплекс легко окисляется до Ре , а это приводит к адсорбции миоглобинохм молекулы Н2О, а не Ог. Однако, если молекула Ог связана параллельно плоскости гема, Ре + комплекс остается устойчивым. В дезоксимиоглобине шестое координационное место железа, т. е. адсорбционный центр Ог, остается вакантным [24] и, таким образом, щелевое строение гидрофобного адсорбционного центра (вместе с рассмотренной стабилизацией комплекса) поз- [c.100]

    На рис. 17.14 сравниваются кривые оксигенацин (связывания кислорода) для гемоглобина и миоглобина. Молекула миоглобина состоит из одной цепи, подобной отдельной цепи гемоглобина, и содержит только одну группу гема. Как следует из вида кривых, миоглобин имеет нормальную зависимость, присущую взаимодействию лиганда с единственным местом связывания, а гемоглобин характеризуется кооперативным связыванием кислорода. По мере увеличения давления кислорода ЗО Уо-ное насыщение миоглобина наступает раньше, чем достигается какое-либо значительное связывание с кислородом гемоглобина. Вместе с тем в результате резкого последующего подъема кривой для гемоглобина при 90%-ном насыщении две кривые оксигенацин пересекаются. [c.105]

    Окись углерода (СО) связывается с изолированным гемом примерно в 25 ООО раз более прочно, чем кислород. Поскольку атмосферный воздух содержит следы СО и еще небольшое количество СО образуется в ходе нормального катаболизма гема, возникает вопрос почему же шестое координационное положение железа в миоглобине занято не СО, а молекулой О2 Связано это со стерическими ограничениями, возникающими в миоглобине. Молекула СО, связываясь с гемом, стремится принять такую ориентацию, при которой все три атома (Ре, С, О) находятся вдоль линии, перпендикулярной плоскости кольца гема (рис. 6.6). Для изолированного гема такая ориентация вполне возможна, но в миоглобине связыванию СО в такой ориентации стерически препятствует дистальный гистидин (рис. 6.6). Поэтому СО связывается в менее благоприятной конфигурации, что понижает прочность связи СО с гемом более чем на два порядка, так что она становится всего лишь в 200 раз прочнее, чем связь гем О2. Тем не менее небольшая часть молекул миоглобина (около 1%) в нормальных условиях связывает СО. [c.55]

    По данным работ [161. 196]. Горизонтальной пунктирной линией вверху обозначена собственная удельная сжимаемость глобулы (средняя по всем глобулярным белкам). —эксперимент. О — аддитивный расчет. Стрелки, направленные вниз, означают величину гидратационного вклада в К 1М для глобулярных белков она отсчитывается от значения сжимаемости глобулы, для полностью развернутых цепей — от нуля, поскольку в этом случае собственная сжимаемость молекулы отражает ничтожно малую сжимаемость вандер-ваальсовых объемов аминокислотных остатков. / — рибонуклеаза 2 — лизоцим 3 — миоглобин — полиглутаминовая кислота 5 — поли-0,1-аланин — коллаген нативный [161, 202] 7 — коллаген деструктурированный (желатина) [200] [c.59]

    Все белки являются полимерами аминокислот. Общая формула такого полимера показана в нижней части рис. 21-1, а модель отдельной аминокислоты-на рис. 21-12. Ферменты представляют собой один из классов белков, причем, видимо, наиболее важный. Ферменты имеют компактные молекулы с молекулярной массой от 10000 до нескольких миллионов и диаметром от 20 А и выше. Они выполняют роль катализаторов, регули-руюидах биохимические реакции. Другие компактные молекулы белков, например миоглобин и гемоглобин, выполняют роль переносчиков и накопителей молекулярного кислорода (см. рис. 20-25, 20-26). Цитохромы-это белки, способные к окислительно-восстановительным реакциям и играющие роль промежуточных звеньев при извлечении энергии из пищевых продуктов (см. рис. 20-23). Молекулы гамма-глобулинов с молекулярной массой порядка 160000 представляют собой так называемые антитела, защитное действие которых заключается в том, что они присоединяются к вирусам, бактериям и другим чужеродным телам в живом организме и осаждают их из жидких сред. Все перечисленные белки относятся к глобулярным белкам. [c.313]

    Полипептндная цепь молекулы миоглобина, содержащая остатки молекул 133 различных аминокислот и небелковый остаток (показан красным цветом). [c.213]

    В обоих белках (гемоглобине и миоглобине) гем прочно связан с белковой частью (глобином) с помощью 80 гидрофобных взаимодействий и одной координационной связью между имидазольным кольцом так называемого проксимального гистидина и атомом железа. Несмотря на многочисленные различия в их аминокислотных последовательностях, миоглобин и гемоглобино-вые субъединицы имеют сходную третичную структуру, включающую восемь спиральных участков. Гем вклинивается в щель между двумя спиральными участками кислород связывается по одну сторону порфирина, в то время как гистидиновый остаток координируется по другую. По-видимому, уникальное свойство гемоглобина связывать кислород зависит от структурных особенностей всей молекулы гемоглобина или миоглобина. [c.360]

    На рис. 4 представлена молекула миоглобина, в которой роль про-стетической группы играет гем. Остов молекулы состоит из 8 относительно прямолинейных участков, разделенных между собой местами сгибов. Каждый отрезок закручен в виде а-спирали. Схематически показано включение гема (заштрихованная фигура). [c.14]

    Иапример, фетичная структура молекулы гемоглобина (миоглобина), включающая гем с атомом железа, представляет собой ша[ ообразный клубок (глобулу). Часть пептидной цепи, которая не образует спирали, содержит аминокислоты с отрицательным зарядом. [c.271]

    Для проявления биологической активности некоторые белки до-лжньг сначала образовать макрокомплекс, состоящий из нескольких третичных структур белковых субъединиц, которые связаны вторичными валентными силами (ионное притяжение, водородные связи). Подобные способы пространственной организации нескольких полипептид-ных субъединиц - это четвертичная структура белка, которая определяет степень ассоциации третичных структур в биологически активном материале. Например, белком с четвертичной структурой является гемоглобин, который состоит из четырех субъединвд (клубков) миоглобина - двух молекул а-гемоглобина, каждая из которых содержит гем. [c.272]

    В полипептидной цепи эта группа, как предполагалось в модели Лаки и Коулсона, отцает четыре электрона для образования общей я-орбитали. Согласно этой модели белок является полупроводником, причем л-электронные орбитали располагаются перпендикулярно оси полипептидной цепи. Позже Эванс и Герей, рассматривая пептидную группу как элементарную ячейку, пришли к выводу о наличии в молекуле белка трех энергетических зон, из которых одна свободна. Более точные расчеты показали, что ширина запрещенной зоны в белках довольно велика и равна 5 эВ. Бриллюэн предложил модель, в которой зоны проводимости белка получаются за счет перекрытия ст-связей. В этой модели ширина запрещенных зон еще больше (8—10 эВ). Проблема полупроводи-мости белковых систем пока ждет решения. Эксперимент показывает, что энергия фотовозбуждения отдельных групп, связанных с белковой цепью, может мигрировать на значительные расстояния и вызывать флуоресценцию других групп. Комплекс миоглобина с оксидом углерода (II) отщепляет СО при действии излучения, которое не поглощается гемином (т. е. группой, непосредственно связанной с СО), но поглощается триптофаном и тирозином — аминокислотами, остатки которых входят в состав белка миоглобина. Здесь энергия мигрирует от белка к геминовой группе. Эти важные свойства белков показывают, что белки в некоторых случаях способны передавать энергию возбуждения, т. е., в общем случае, сигналы . В ходе эволюции функции передачи сигналов в форме серии дискретных импульсов, частота которых зависит от силы раздражения, перешли к более совершенной системе — нейронам нервной сети. [c.348]

    Число аминокислотных остатков, входяшд4Х в молекулы отдельных белков, весьма различно в инсулине их 51, в миоглобине - около 140. Поэтому и молекулярная масса белков колеблется в очень широких пределах - от 10 ООО до нескольких миллионов. На основе определения молекулярной массы и элементного анализа установлена эмпирическая формула белковой молекулы - гемоглобина крови [c.419]

    Предположение о том, что 70% цепи находится в спиральной конформации, подтверждается результатами, полученными методом дейтерообмена. Скоулоди (1959) 01бнаружила при раосмотрбн и двухмерной проекции Фурье единичной ячейки миоглобина тюленя, что, несмотря на совершенно различный аминокислотный состав, миоглобины тюленя и кашалота им еюг чрезвычайную сходную третичную структуру. Перутц (1960) на основании трехмерного анализа гемоглобина пришел к заключению, что каждая из четырех субъединиц этой молекулы структурно сходна с миоглобином. При анализе миоглобина с разрешением в 2 А (этого еще недостаточно для атомного разрешения) группа Кендрью (1961) получила возможность сделать некоторые выводы о последовательности части аминокислот в миоглобине. [c.711]

    В простом случае миоглобина не наблюдается сигмоидной кривой. Для того чтобы 1юлучнть кривую, и.меющую форму, показанную па рис. 9.9,6, необходимо предположить, что при захвате кислорода проявляется кооперативный эффект и что присутствие одной нли большего числа молекул Ог, уже связанных с ИЬ, содей- [c.303]

    В нач. 50-х гг. была выдвинута идея о трех уровнях организации белковых молекул (К. У. Линдерстрём-Ланг, 1952)-первичной, вторичной и третичной структурах. Определены первичные структуры инсулина (Ф. Сенгер, 1953) и рибонуклеазы (К. Анфинсен, С. Мур, К. Хёрс, У. Стайн, 1960). По данным рентгеноструктурного анализа были построены трехмерные модели миоглобина (Дж. Кендрю, 1958) и гемоглобина (М. Перуц, 1958) и, т. обр,, доказано существование в Б, вторичной и третичной структур, в т. ч. а-спирали, предсказанной Л. Полингом и Р, Кори в 1949-51. [c.248]

    Субъединицы аир прочно удерживаются в составе тетрамера Г. множественными ван-дер-ваальсовыми взаимод. и водородными связями дезоксигенированная форма НЬА стабилизирована кроме того неск. ионными связями внутри и между субъединицами. Тетрамер Г.-кооперативная структура, в к-рой существует взаимод. пространственно разобщенных между собой групп (т. наз. гем-гем взаимодействие). Это проявляется в облегчении присоединения к тетрамеру последующих молекул О2 по мере протекания оксигенирования, что значительно увеличивает эффективность переноса О2 при физиол. условиях по сравнению с мономерными Г. и миоглобинам (белок, депонирующий [c.516]

    Под названием гемоглобин объединяют многие виды белка, осуществляющего перенос кислорода. Гемоглобин имеет молекулярный вес порядка 64000, каждая его молекула содержит четыре группы гема, четыре атома железа и при насыщении связывает четыре молекулы кислорода. Миоглобин — это белок, который служит как депо кислорода. Он выделен из мышц. Его молекулярный вес равен 16000, каждая молекула содержит одну группу гема, один атом железа и при насыщении связывает одну молекулу кислорода. Миоглобин был первым белком, для которого была установлена детальная молекулярная структура (методом дифракции рентгеновских лучей, Кендрю, 1959 г.). Молекулярная структура гемоглобина также найдена с помощью этого метода. В действительности гемоглобин представляет собой тетрамер, все четыре составляющие которого имеют молекулярный вес порядка 16000 каждая и очень сходны с миоглобином как по аминокислотному составу, так и по пространственной конформации. [c.231]


Смотреть страницы где упоминается термин Миоглобин в молекуле: [c.131]    [c.261]    [c.262]    [c.363]    [c.351]    [c.302]    [c.439]    [c.439]    [c.442]    [c.468]    [c.343]    [c.43]    [c.570]   
Основы биологической химии (1970) -- [ c.111 ]




ПОИСК





Смотрите так же термины и статьи:

Миоглобин



© 2025 chem21.info Реклама на сайте