Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инфракрасное излучение, поглощени

    Не все молекулы поглощают инфракрасное излучение. В частности, молекулы с определенными свойства.ми симметрии, как, например, гомоядерные двухатомные молекулы, не поглощают инфракрасного излучения. В более сложных молекулах не все типы колебаний обязательно соответствуют поглощению инфракрасного излучения. Например, симметричные молекулы, как, скажем, этилен, Н,С=СН2, не обнаруживают всех своих колебаний в инфракрасном спектре. Для того чтобы помочь исследованию колебаний таких молекул, часто используется спектроскопия комбинационного рассеяния (КР). Спектр КР возникает в результате облучения молекул свето.м (обычно в види.мой области) известной длины волны. В современных спектрометрах КР в качестве источника света, облучающего образец, обычно используется лазерный пучок (рис. 13-35). Поглощение излучения измеряется косвенным путем. При облучении светом высокой энергии [c.590]


    СПЕКТРОФОТОМЕТРИЯ (абсорбционная) — физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой, видимой и инфракрасной части спектра. Методом С. изучают зависимость интенсивности (энергии) излучения, поглощения, отражения, рассеяния или иного преобразования света, излучаемого веществом или падающего на него, от длины волны. С. широко применяют для изучения строения и состава различных соединений (комплексов, красителей, аналитических реагентов и т. д.), для качественного и количественного определения веществ (открытия следов элементов в металлах и сплавах). Приборы, которыми пользуются в С., называют спектрофотометрами. [c.234]

    Термическая диссоциация молекул происходит или в результате поглощения молекулами инфракрасного излучения, или же в результате столкновения молекул. Диссоциация молекул в [c.79]

    В практической спектрофотометрии измерения поглощения проводят в спектральной области, которую принято делить на 3 части ультрафиолетовая, видимая и инфракрасная области спектра. Единицей измерения длин волн в ультрафиолетовой части спектра в практической спектрофотометрии обычно служит нанометр (1 нм = 10 см). Ультрафиолетовая область спектра расположена в интервале длин волн 200— 400 нм, видимая область — в интервале длин волн 400—700 нм. Наконец, инфракрасная область спектра начинается примерно с 700 нм. В инфракрасной области спектра единицей измерения длин волн служит микрон (1 мк = 10- см). Очень часто инфракрасное излучение характеризуется волновым числом -V, у= 1Д (где X выражено в см), размерность V соответственно см Например, длина волны 2 лк соответствует волновому числу 5000 слг . Имеются специальные таблицы пересчета волновых чисел в длины волн. Наиболее доступная инфракрасная область расположена в интервале 0,7—20 мк, более длинноволновая область инфракрасного спектра малодоступна и практической спектрофотометрией пока не используется. [c.245]

    Ионизирующее излучение (гамма- и рентгеновские лучи) обладает такой энергией, что способно выбить из молекулы электроны с образованием ионов. Инфракрасное излучение обладает низкой энергией и при взаимодействии с молекулами вызывает колебательные и вращательные эффекты. Электромагнитное излучение в близкой ультрафиолетовой и видимой областях спектра (240—700 нм) взаимодействует с электронами молекулы. Ниже 240 нм ультрафиолетовый участок спектра задерживается озоном иа уровне 20—30 км от Земли. При поглощении света с длиной волны менее 800 нм изменяется электронная, вращательная и колебательная энергия молекул, что приводит к возбужденному состоянию молекул. [c.26]


    Спектральный метод (ОСТ-39-102-79) основан на измерении поглощения инфракрасного излучения водонефтяной эмульсией и эталонной безводной нефти. О содержании воды судят по разности оптической плотности в области, совпадающей с полосой поглощения воды, и полусуммы областей, расположенных по обе стороны от полосы поглощения воды. [c.142]

    Инфракрасное излучение Электромагнитное излучение с энергией, меньшей, чем у видимого света. При поглощении ИК-излучения температура повышается Ион [c.544]

    Инфракрасные спектры возникают в результате взаимодействия вещества с электромагнитными колебаниями определенной частоты. Инфракрасное излучение сообщает молекуле, находящейся в основном электронном состоянии, энергию, необходимую для переходов между вращательными и колебательными уровнями энергии. Характеристические полосы поглощения (или отражения) в инфракрасных (ИК) спектрах связаны с энергетическими переходами [c.157]

    Колебательная инфракрасная спектроскопия (ИК-спектроскопия) наряду с электронной спектроскопией в видимой и ультрафиолетовой области — один из важных источников информации о строении молекул. Для получения инфракрасных спектров поглощения используют специальные приборы — инфракрасные спектрометры. Принцип действия их сходен с принципом действия спектрофотометров. Однако для этой области спектра используются специфические источники излучения, специфические методы регистрации излучения и специальные материалы для призм и кювет. [c.155]

    В дальней инфракрасной или даже в области радиочастот. Энергии колебательных переходов (10 —10 эв) соответствует излучение (поглощение) в ближней инфракрасной области. Изменение энергии [c.174]

    Конструктивно прибор выполнен в виде письменного стола, на котором в массивном литом корпусе помещается монохроматор. Передняя стенка монохроматора представляет собой пульт управления прибором. В левой тумбе стола помещается блок питания прибора. Пульт управления блока писания расположен на передней стенке левой тумбы. На пульте имеются выключатели прибора, кондиционера и источника инфракрасного излучения. Там же расположены предохранители и амперметр для измерения тока в источнике излучения. В правой тумбе прибора размещена усилительная схема прибора и замедлитель, который регулирует скорость записи спектра при резком изменении поглощения. На передней панели правой тумбы выведены выключатели усилителя и замедлителя и рукоятки установки усилителя и замедлителя. [c.51]

    Так как зеркало 5 поочередно пропускает потоки инфракрасного излучения разной интенсивности в случае поглощения веществом, то в термоэлементе возникает пульсирующий ток, который подается на усилитель переменного тока 13. Увеличенное напряжение от усилителя 13 подается на сервомотор 14, который через механический привод 15 вращает оптический клин 16, ослабляющий поток излучения, прошедший через кювету сравнения 3 а, до интенсивности потока излучения, прошедшего через кювету с исследуемым веществом. При равенстве интенсивностей света усилитель переменного тока не будет усиливать термоток. При этом напряжение на сервомоторе станет [c.53]

    В пидимой и ультрафиолетовой областях спектра. Энергии колебательных переходов (10 1—10 эВ) соответствует излучение (поглощение) в ближней инфракрасной области. Наименьшую величину имеют энергии вращательных переходов молекул (10 —10 эВ)  [c.144]

    В-третьих, как уже упоминалось, взаимодействие вещества с инфракрасным излучением, сопровождающееся поглощением излучения, а также испускание радиации в этой области спектра возможно для молекул, у которых вращение и колебание сопровождаются изменением электрического момента (дипольный момент). У молекул, состоящих из одинаковых атомов (Оа, N5, Нг. ..), дипольный момент равен нулю и не появляется ни при колебаниях, ни при вращении, поэтому для таких веществ отсутствует испускание или поглощение в инфракрасной области. Однако изменения колебательных и вращательных состояний могут сопровождаться электронными переходами, а также проявляются при рассеянии света. [c.252]

    Если уравнение (1.1) сопоставить с приведенными значениями разностей энергий для соседних энергетических уровней, то излучение в УФ-области спектра будет давать кванты света, достаточные, чтобы вызвать типичные электронные переходы. Например, длина волны 250 нм соответствует энергии кванта примерно 0,5-10 Дж, а моль таких квантов имеет энергию примерно 300 кДж, Энергия квантов электронного возбуждения одного и того же порядка, что и величина энергии диссоциации связи. Поэтому электронное возбуждение иногда сопровождается фотохимическим разложением. Однако в большинстве случаев разрыва химической связи не происходит, так как возбужденные молекулы возвращаются в основное состояние в результате различных фотофизических процессов, а в конденсированных средах, кроме того, взаимодействие между частицами приводит к быстрой передаче поглощенной энергии всему коллективу частиц. В некоторых молекулах электронные уровни расположены так близко друг от друга, что для электронного перехода достаточен видимый свет. Если уровни удалены друг от друга, то, чтобы вызвать эти переходы, необходимо УФ-излучение или даже рентгеновское. Инфракрасное излучение вызывает переходы между колебательными уровнями, радиочастотное излучение— между вращательными. [c.7]


    Регистрацию излучения также нельзя вести методами, используемыми в видимой н ультрафиолетовой области, т. е. с помощью фотопластинок или фотоэлементов. Энергия квантов ИК-излучения слишком мала, чтобы вызвать какие-либо фотохимические реакции, лежащие в основе фотографического процесса, или вызывать фотоэффект (выбивать электрон из кристаллической решетки металла), используемый в фотоэлементах и фотоумножителях Поэтому регистрация излучения ведется с помощью термоэлементов, регистрирующих разогрев, возникающий при попадании на термоэлемент, и поглощении ими квантов инфракрасного излучения. [c.155]

    Тонкие пленки. Они получили гораздо большее распространение в науке и технике. Помимо широкого использования в оптических устройствах (покрытие зеркал, различные интерференционные я поглощающие фильтры, просветляющие покрытия, защитные покрытия, предотвращающие окисление и повреждение оптических поверхностей, и др.), тонкие пленки в настоящее время применяют для контроля температуры космических объектов, а также в качестве приемников видимого и инфракрасного излучения. Во всех перечисленных случаях весьма важно иметь точные данные об оптических свойствах пленок и прежде всего данные о коэффициентах отражения, пропускания и поглощения света в однослойных или многослойных системах пленок. [c.502]

    В ней измеряют увеличение объема газа вследствие поглощения им инфракрасного излучения. В видимой и ультрафиолетовой областях используют преимущественно рассмотренные ранее (разд. 5.2.1.3) фотоэлектронные умножители. Все упомянутые приемники и лучения применяют в определенных спектральных областях обычно они обладают различной спектральной чувствительностью [551. [c.237]

    На рнс. 59 показаны инфракрасные спектры поглощения оксида углерода, адсорбированного на четырех различных металлах. Молекула газообразного оксида углерода почти неполярна и имеет лишь слабое поглощение при 2143 см . Кетоны поглощают излучение в области 1900...1600 см . Как видно из рис. 59, при адсорбции оксида углерода на меди частота колебаний связи изменяется незначительно, а при адсорбции на палладии частота становится почти такой же, как частота колебаний карбонильной группы в кетонах. Полученные данные свидетельствуют, что молекула оксида углерода адсорби-р1 тся на атоме меди нли платины в виде М—С=0, а с никелем или палладием [c.146]

    Метод определения содержания метил-ш/ ет-бутилового эфира (МТБЭ). Метод основан на измерении величины поглощения инфракрасного излучения в максимуме полосы поглощения 1090 см , характеризующей валентные колебания группы С— О—С в молекуле метил-ш/)ет-бутилового эфира. Испытание проводится на ИК-спектрофотометре средней или высокой дисперсии, работающем в диапазоне, имеющем разрешение не ниже I см и воспроизводимосгь величины пропускания в ИК-спектре 1% с использованием жидкостных кювет с окнами из КВг или N301. При подготовке к испытаниям готовят серию градуировочных образцов (минимально 7) неэтилированного бензина А-76 с 1 15% мае. МТБЭ. Затем компенсационным методом регистрируют ИК-спектры градуировочных растворов. При этом толщина кювет подбирается такая, чтобы оптическая [c.418]

    Гордон и Пауелл [242] измерили инфракрасные спектры некоторых углеводородов Сд и С,, но получили, очевидно, очень неточные результаты прежде всего из-за совершенно недостаточной разрешающей способности спектрометра (см. рис. 4 и относящийся к ней текст). Работа [242] может служить примером устаревших исследований, результаты которых нам>1 оставлялись без внимания. Однако в некоторых случаях мы не располагали новейшими данными и вынуждены были приводить устаревшие, полученные при недостаточной разрешающей способности и с углеводородами неизвестной чистоты. Такими являются, например, спектры 2- и 3-метилпентанов (рис. 27), алкенов g—Сз(рис. 54а), бутина-2 (рис. 55). Часто недоставало данных для сохранения желательной формы их представления (график спектра и таблица частот) и приходилось ограничиваться только графиком. Только таблица частот не может адэкватно передать инфракрасный спектр поглощения, поэтому одни таблицы пе приводятся, однако для изомерных октанов помещена лишь таблица частот по данным Этьена и соавторов [382]. Приведенные в цитируемой работе графики спектров октанов представляют собой кривые зависимости интенсивности излучения от угла поворота призмы. В Справочнике не помещались такие неколичественные и, главное, совершенно неединообразные графики. [c.500]

    Поглощение инфракрасного излучения (2,5—25 мк) частицами вещества приводит к изменению вращательно-колебательного состояния молекулы и возникновению молекулярного вращательноколебательного спектра. В далекой ИК-области возникают лишь вращательные спектры молекул. [c.228]

    При изучении адсорбции из газовой фазы широко используется метод инфракрасной спектроскопии, который позволяет установить распределение электронной плотности в адсорбированных молекулах и определить характер связи адсорбат — адсорбент. Применению этого метода для изучения адсорбции органических веществ на электродах препятствует сильное поглощение инфракрасных лучей в растворе электролита. Тем не менее в самое последнее время появились указания на возможность использования метода инфракрасной спектроскопии и в электрохимических системах (А. Бьюик). С этой целью применяются особые ячейки, в которых ИК-излучение проходит по кварцевым световодам, прижатым к поверхности электрода. Между концом световода и электродом остается очень тонкий слой раствора, в результате чего удается резко снизить эффект поглощения инфракрасного излучения раствором электролита и зарегистрировать ИК-спектры поглощения адсорбционного слоя. В частности, удается проследить, как изменяется характер связей между атомами в хемосор-бированной на платиновом электроде органической частице, и сделать вывод о ее химической структуре. [c.35]

    Спектрофотометр ИКС-21. Прибор предназначен для изучения спектров поглощения в области волновых чисел спектра от 667 до 5000 СМ . Если на приборе установлена призма, изготовленная из Сз1, то обеспечивается работа в области волновых чисел от 200 до 500 ОМ . Прибор работает по однолучевой схеме. Световой поток от источника инфракрасного излучения (силитовый стержень /) (рис. 29), нагреваемого до 1300°С, направляется на защитное стекло 3. Между глобаром и защитным стеклом находится модулятор [c.58]

    Следует обратить внимание, что дгже вне максимумов полос поглощения растворители, как впрочем и другие жидкости и твердые тела, заметно поглощают инфракрасное излучение. Это не позволяет [c.318]

    Исследуемое вещество облучают инфракрасными лучами с постепенно изменяющейся длиной волны и измеряют поглощение в зависимости от длины волны (или волнового числа). Таким образом получается абсорбционный спектр в инфракрасной области. Световые кванты поглощенного инфракрасного излучения возбуждают молекулу в более высокие колебательные и вращательные состояния. Поэтому эти спектры называют также колебательными или вращательно-колебательными. Инфракрасная спектроскопия применяется так же как метод идентификации соединений. Два вещества идентичны, если их спектры одинаковы в диапазоне волновых чисел от 700 до 1400 см . Эту область называют областью отпечатков пальцев (англ. fingerprint), поскольку не существует двух разных соединений, которые имели бы в этой области одинаковые спектры. [c.25]

    Кванты длинноволнового излучения (инфракрасные лучи) имеют относительно небольшую энергию, возбудить электроны они не могут. Однако их энергия достаточна для возбуждения колебаний атомов в молекулах. Характер же этих колебаний, их энергия зависят как от собственной природы атома, так и от характера его связи в молекуле. Поэтому инфракрасные спектры поглощения (диапазон волн 1 — 10 мк, т. е. частоты порядка 500—5000 см" ) дают особенно ценную информацию о строении молекул органических соединений. В качестве примера на рисунке 30 приведен ИК-спектр ацетофенона СвНг,—СО—СН . Полоса 1680 см" вызывается колебаниями карбонильной группы эта характерная по- [c.359]

    В связи с вышесказанным для объяснения механизма активации вначале была вЬгдвинута радиационная гипотеза (Перрэн, 1919 г.), согласно которой активация молекул происходит путем поглощения инфракрасного излучения от стенок реактора, при этом константа скорости реакции первого порядка описывается формулой [c.100]


Смотреть страницы где упоминается термин Инфракрасное излучение, поглощени: [c.509]    [c.266]    [c.80]    [c.163]    [c.588]    [c.29]    [c.89]    [c.149]    [c.256]    [c.165]    [c.62]    [c.63]    [c.240]    [c.100]    [c.161]    [c.249]   
Инструментальные методы химического анализа (1960) -- [ c.259 , c.472 ]

Инструментальные методы химического анализа (1960) -- [ c.259 , c.472 ]




ПОИСК





Смотрите так же термины и статьи:

Поглощение инфракрасного излучения



© 2025 chem21.info Реклама на сайте