Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронное состояние возбужденное

    Какую энергию надо затратить, чтобы возбудить электрон в атоме водорода, находящийся в основном состоянии (на первом энергетическом уровне), до второго и пятого энергетического уровня Ответ 984,3 и 1260 кДж/моль. [c.78]

    Инертные газы инертны потому, что на них заканчивается заполнение -Г0 слоя, а такие системы особенно компактны и устойчивы. По той же причине атомы щелочных металлов водородоподобны. Они содержат один электрон сверх заполненных слоев, образующих компактный остов. Особой устойчивостью заполненных слоев объясняется и высокое сродство к электрону у галогенов. Атом бериллия не похож на атом гелия потому, что он легко возбудим в состоянии то вре- [c.182]


    Предположим, что мы возбудили некоторое число ( о) молекул, переведя их в определенное электронное состояние в таких условиях, что испускание света является единственным путем возвращения в основное состояние. Вероятность того, что одна из этих молекул испустит свет и возвратится в более низкое состояние, не зависит от присутствия других возбужденных молекул, и, следовательно, скорость испускания, т. е. число испускающих молекул за секунду, пропорциональна числу молекул п, имеющихся в системе в момент времени 1  [c.31]

    Перед тем как перейти к дальнейшему обсуждению гибридизации, дополним объяснение описанием различия между валентным состоянием и стационарным состоянием вр . Чтобы возбудить атом углерода и перевести его из стационарного состояния зр в валентное состояние, проводят две операции 1) з- и три р-орби-тали гибридизуют с тем, чтобы образовать четыре зр -гибрида, каждый из которых заселен одним электроном 2) производят преимущественную ориентацию спинов этих электронов, обусловленную взаимодействием спинов между собой или их движением по орбиталям, предоставляя им совершенно свободно, случайно и легко соединяться в пары со спинами электронов других атомов. Оба эти процесса требуют вклада энергии, причем в этом случае общая энергия составляет 65 ккал/г-атом. Отметим вновь, что валентное состояние вообще неидентично стационарному состоянию атома и идея о возбуждении валентного состояния представляет собой только мысленную конструкцию, которая полезна при рассмотрении вопроса об образовании связи. [c.94]

    Аналогичная гибридизация имеет место и у переходных элементов. При этом комбинируются 3d-, 4s- и 4/ -орбиты. Особый интерес представляет s/j d-гибридизация. Полинг показал, что при этом возникают шесть эквивалентных электронных тяжей, направленных, например, вдоль положительных и отрицательных направлений осей х, у, г (октаэдрическая гибридизация). Эти гибридизации привлекались для объяснения строения комплексных соединений типа ионов Fe ( N)s или Со (ЫНз)б . Атом железа имеет внешние электроны (3df (4s) . Ион Ре + имеет строение (3d)" (4s)Представляется энергетически выгодным возбудить три электрона из З -состояния в 4р-состояние. Тогда в возникшем ионе осуществляется состояние (МУ (4s) (4р) . Два /-электрона, один 4s и три 4р дают октаэдрическую гибридизацию, приводящую к шести сильным связям, компенсирующим энергию, затраченную иа возбуждение. [c.480]

    В 5-подуровне наружного уровня электронной оболочки атомов этих элементов имеется по два электрона с противоположными спинами, поэтому в нормальном состоянии валентность этих элементов равна нулю. Из 8-состояния один электрон можно возбудить в р-состояние — оба электрона становятся непарными и валентность повышается до двух единиц. [c.43]


    Азотная, азотистая кислота и другие кислородные соединения азота. Азотная кислота и ее соли принадлежат к наиболее важным кислородным соединениям азота. Формально было принято считать, что азот в молекуле НЫОз проявляет высшую положительную валентность, равную пяти. Однако для осуществления состояния азота с пятью неспаренными электронами необходимо возбудить и распарить электроны с -орбитали второго энергетического уровня на третий уровень, что требует большой затраты энергии. Поскольку эта энергия не может быть компенсирована энергией образования химических связей с другими атомами, для атома азота энергетически боле , выгодны отдача (оттягивание) х-электрона со второго энергетического уровня к другому атому, например, атому кислорода, и образование ионного состояния азота М+  [c.212]

    К данной подгруппе принадлежат бериллий, магний, кальций, стронций, барий и радий. Атомы элементов 2-н подгруппы имеют на внешнем квантовом слое по два спаренных з-электрона. В нормальном состоянии они являются нул ьвалентными элементами. Если один из электронов возбудить, т. е. перевести на соседний подуровень того же уровня, то оба электрона будут холостыми и элементы станут двухвалентными. Возбуждение возможно за счет внешней энергии, например, в атоме Ве можно возбудить электроны, затратив 62,3 ккал тепла, при этом состояние перейдет в состояние [c.250]

    При взаимод. электронов с молекулами наряду с образованием мол. ионов возможна и диссоциативная ионизация с образованием осколочных ионов, напр. -I--1-е->Н -1-Н-(-2е. Такой процесс становится возможным, когда Е достигает нек-рой пороговой величины. В приведенном примере эта величина (потенциал появления иона Н" ) равна сумме потенциала ионизации атома Н /(Н) = 13,6 эВ и энергии диссоциации В(Н-Н) = 4,5 эВ и составляет 18,1 эВ. Однако поскольку, согласно принципу Франка-Кондона, с наиб, вероятностью происходят вертикальные квантовые переходы, при к-рых не изменяется расстояние между атомами в молекуле, энергия, необходимая для диссоциативной ионизации, часто оказывается больше пороговой величины. Так, для образования Н и из низшего колебат, уровня основного электронного состояния Н2 необходимо возбудить молекулу в состояние энергия к-рого превышает порог ионизации на 10-14 эВ (см, рис.). Избыточная энергия [c.268]

    В случае фотосопротивлений энергия поглощаемых квантов недостаточна для выбивания электронов из материала приемника, но в состоянии возбудить электроны из связанного состояния, когда они не участвуют в проводимости, до свободного состояния, когда они могут проводить ток. Фотопроводимость проявляется, таким образом, в уменьшении сопротивления полупроводников при их облучении (сопротивление уменьшается благодаря увеличению числа свободных электронов — носителей тока). [c.225]

    По числу холостых электронов в нормальном состоянии их валентность 2. У кислорода иной валентности быть не может, так как возбудить электроны из спаренного состояния нельзя (во втором уровне нет d-подуровня). Электроны других атомов от серы до полония можно возбудить, повышая валентность до 4 или 6. [c.554]

    Отсутствие флуоресценции у некоторых анионов, таких, как нитрат-анион, также обусловлено фоторазложением. В окрашенных комплексах некоторых переходных элементов поглощенная энергия деградирует через более низкие возбужденные состояния, возникновение которых обусловлено наличием частично заполненных -орбиталей. Редкоземельные элементы имеют частично незаполненную 4/-оболочку, и электроны, находящиеся на 4/-уровнях, поглощая свет, могут перейти на незаполненные 4/-уровни. Эти уровни хорошо экранированы от внешних влияний наиболее удаленными от ядра электронами, занимающими в трехвалентных ионах орбитали 5з и 5р. Поэтому безызлучательная дезактивация мала, и в кристаллофосфорах все редкоземельные элементы, содержащие от 2 до 12/-электронов, а именно Рг, N(1, 8т, Ей, Сс1, ТЬ, Оу, Но, Ег, Ти, дают линейчатое испускание. Считают, что в жидких растворах линейчатое испускание ограничено пятью ионами элементов середины ряда, а именно самария, европия, гадолиния, тербия и диспрозия [126]. Спектры поглощения редкоземельных элементов сложны, и испускание может происходить с нескольких энергетических уровней. Простые соли (например, хлориды, сульфаты) пяти ионов, которые люминесцируют в растворе, дают линейчатое поглощение, мало интенсивное в водной среде, и при низких концентрациях эти вещества трудно возбуждаются. Хлорид тербия можно возбудить линией ртути 366 нм (уширенной давлением), и с помощью чувствительного спектрофлуориметра обнаружить концентрации вплоть до 10" М. Хлориды самария, европия и диспрозия этой группой длин волн возбуждаются менее интенсивно (рис. 177 и табл. 52 в разделе V, Ж). При возбуждении более коротковолновым светом растворы хлорида гадолиния дают линейчатое испускание при 310 нм (рис. 177). Интенсивность по- [c.448]

    Электрон может возбудить молекулу до нестабильного состояния, после чего молекула диссоциирует па положительный и отрицательный ион по формуле [c.114]

    Для определения валентности элемента недостаточно рассматривать только основное состояние атома. Это видно на примере атома углерода. Он имеет два нескомпенсированных 2р-электрона. Энергия, необходимая для того, чтобы возбудить электроны из состояния 2х до состояния 2р, довольно велика и [c.90]


    В металле число атомных орбиталей, участвующих в образовании отдельной молекулярной орбитали, чрезвычайно велико, поскольку каждая атомная орбиталь перекрывается сразу с несколькими другими. Поэтому число возникающих молекулярных орбиталей тоже оказывается очень большим. На рис. 22.20 схематически показано, что происходит при увеличении числа атомных орбиталей, перекрыванием которых создаются молекулярные орбитали. Разность энергий между самой высокой и самой низкой по энергии молекулярными орбиталями не превышает величины, характерной для обычной ковалентной связи, но число молекулярных орбиталей с энергиями, попадающими в этот диапазон, оказывается очень большим. Таким образом, взаимодействие всех валентных орбиталей атомов металла с валентными орбиталями соседних атомов приводит к образованию огромного числа чрезвычайно близко расположенных друг к другу по энергии молекулярных орбиталей, делокализованных по всей кристаллической решетке металла. Различия в энергии между отдельными орбиталями атомов металла настолько незначительны, что для всех практических целей можно считать, будто соответствующие уровни энергии образуют непрерывную зону разрешенных энергетических состояний, как показано на рис. 22.20. Валентные электроны металла неполностью заполняют эту зону. Можно упрощенно представить себе энергетическую зону металла как сосуд, частично наполненный электронами. Такое неполное заселение разрешенных уровней энергии электронами как раз и обусловливает характерные свойства металлов. Электронам, заселяющим орбитали самых верхних заполненных уровней, требуется очень небольшая избыточная энергия, чтобы возбудиться и перейти на орбитали более высоких незанятых уровней. При наличии любого источника возбуждения, как, например, внешнее электрическое поле или приток тепловой энергии, электроны возбуждаются и переходят на прежде незанятые энергетические уровни и таким образом могут свободно перемещаться по всей кристаллической решетке, что и обусловливает высокие электропроводность и теплопроводность металла. [c.361]

    Природа распорядилась так, что не все области пространства одинаково доступны для электрона. Существуют такие, где вероятность его обнаружить очень мала. Но есть и такие, где вероятность найти электрон, обладающий определенным запасом энергии, достаточно мала, но если каким-либо образом увеличить этот з шас ( возбудить электрон), то вероятность найти его там сильно увеличится и может превысить 90%. Поэтому орбитали, отвечающие таким (возбужденным) состояниям электрона в атоме, всегда существуют. А значит, орбиталей в атоме значительно больше, чем электронов, и не все они будут заняты. [c.32]

    Энергия диссоциации молекулы достигает максимума у и спадает до минимума у Мп , затем снова возрастает. Это можно объяснить тем, что внешний электронный слой всех соответствующих атомов (кроме Сг) —это закрытая 4 оболочка. Как видно было на примере Ве, она не может привести к образованию связи между одинаковыми атомами. Если атом возбудить до ближайшего состояния с открытой оболочкой, он сможет вступить в соединение с другим таким же атомом. Выделяющаяся при этом энергия связи будет компенсировать энергию, затраченную на возбуждение атомов. Чем выше была энергия возбуждения, тем ниже будет энергия диссоциации образовавшейся молекулы. Например, [c.124]

    Невозможность возбудить спаренные электроны фтора (отсутствие во втором уровне -подуровня) свидетельствует о том, что единственно возможной его валентностью является 1. У других атомов можно возбуждать последовательно спаренные электроны и повышать валентность до 3, 5 и 7. Невозможность 7-валентного состояния у брома и астата до сих пор не получила объяснения. [c.590]

    Зададимся вопросом что происходит с молекулой, когда с ней сталкивается квант, энергия которого недостаточна для поднятия электрона на следующий высший уровень Например, красного света бывает достаточно для возбуждения таких немногих веществ, как хлорофиллы или индиго. Но в большинстве случаев для возбуждения электронов энергия такого света слишком мала, а вот для возбуждения колебаний — даже чересчур велика. Может ли молекула пренебречь таким невезучим квантом Оказывается, нет. Она все равно возбудится, но мимолетно, попадая не на законный, дозволенный теорией уровень, а на так называемый виртуальный. Жить на нем система не может, так же как человек не может плавать в воздухе. Так что с квантом приходится немедленно расстаться. При этом он иногда несет некоторые энергетические убытки... Если молекула спрыгнет с виртуального уровня не на исходный, а на подуровень, соответствующий ее колебательно-возбужденному состоянию, кванту придется расстаться с частью энергии, равной высоте этого подуровня. Это приводит на практике к тому, что в раствор входит красный свет с одной длиной волны, а выходит, в простейшем случае, уже с двумя в результате описанного выше процесса появляется слабая дополнительная полоса, называемая стоксовой (в честь [c.169]

    Для перевода его в четырехвалентное состояние необходимо один электрон из 25-орбитали возбудить на вакантную 2р-ор-бнталь, иначе говоря, осуществить 25—2р-возбужденне. В валентном состоянии, следовательно,.внешняя (валентная) электронная оболочка атома углерода будет иметь четыре валентных электрона  [c.74]

    Если совсем вырвать из атома аргона один из Зр-электронов, а один из оставшихся пяти Зр-электронов возбудить до Зй-состояния (т. е. как бы одновременно произвести два действия — и катионизацию и возбуждение), положение станет еще более выгодным состоянию Зё будет отвечать уже эффективный ядерный заряд, близкий к двойке. [c.46]

    Молекулярноорбитальная модель бензола выглядит следующим образом каждый атом углерода в кольце рассматривается как находящийся в состоянии р2-гибридизации и образующий три р -гибридных о-связи с валентными углами 120°. Все атомы, образующие молекулу, расположены в одной плоскости. На образование трех связей (двух С—С и одной С—II) каждый углеродный атом затрачивает три из четырех своих валентных электронов. Оставшиеся шесть электронов углеродных атомов располагаются на р-орбиталях (оси которых перпендикулярны к плоскости ядра) по одному у каждого атома углерода. Так как атомы углерода находятся на равных расстояниях в кольце, то р-орби-таль центрального атома углерода в любом из трех последовательных атомов образует л-связь, перекрываясь в равной степени с р-орбиталями двух боковых атомов углерода этой тройки. Две образующиеся таким образом молекулярные орбитали сливаются одна с другой с образованием делокализованной молекулярной орбитали (я-орбитали), охватывающей все кольцо, что обеспечивает более стабильное распределение электронной плотности, чем любое другое, при котором электроны рассматриваются попарно локализованными между соседними углеродамч (как в этилене). По этой причине длина связей С—С у бензола лежит между длиной связей простых и двойных, а прочность их значительно выше, чем в этилене. Бензол более стабилен, чем циклогексатриен, структуру которого для бензола предложил Кекуле. Необходимо сообщить довольно большое количество энергии молекуле бензола, чтобы возбудить ее до такого состояния реакционной способности, в котором молекула находилась бы, если бы у нее была структура, предложенная Кекуле. Разность энергий фактической молекулы и структуры Кекуле в основном возникает за счет делокализации я-электронов, и ее называют энергией делокализации молекулы она составляет 36 ккал/моль. [c.21]

    Как мы отметили в 3, п. 1, во всех интересующих нас явлениях участвуют только те электроны, которые можно возбудить тепловым путем, т. е. электроны, заполняющие интервал энергии порядка коТ вблизи уровня Ферми (см. рис. 50, а). Все другие состояния, расположеннЫё значительно ниже, выпадают вследствие существования принципа Паули. Таким образом, надо знать лишь структуру зоны вблизи уровня Ферми. Это приводит нас к представлению о поверхности Ферми. [c.128]

    ТЕРМ0Л10МИНЕСЦЁНЦИЯ, люминесцентное свечение в-ва, возникающее в процессе его нагревания. Обычно для появления Т. в-во необходимо предварительно возбудить УФ светом, ионизирующим излучением (у-квантами, рентгеновскими лучами, потоком электронов электрич. полем, мех. воздействием. В нек-рых случаях Т. связана с образованием электронно-возбужденных состояний молекул в хим. р-цнях (см. Хемилюминесценция). Термолюминесцируют неорг. в-ва, в т. ч. люминофоры разл. назначения (ламповые, телевизионные и пр.), лазерные кристаллы (напр., рубин, полупроводниковые кристаллы), стекла, мн. полимеры (полистирол, полиамиды, полиэтилентерефталат, полиолефины, фтор- и хлорсодержащие полимеры, все каучуки и др.). [c.542]

    Резкое различие между элементами второго и последующих периодов наблюдается и в проявляемых ими степенях окисления. Если кислород исключительно двухвалентен, то для серы в кислородных соединениях обычны степени окисления +4 и +6. Хотя в основном (невозбужденном) состоянии атома электронные конфигурации этих элементов аналогичны и соответствуют лишь двум неспаренным электронам, в случае серы один или два электрона, получив небольшое количество энергии, могут г[ерейти на подуровень М (возбужденное состояние атома). За счет этого число неспаренных электронов станет большим и в пределе равно шести. Возбудить же атом кислорода, чтобы увеличилось число неспаренных электронов, практическп невозможно. Для этого электроны со второго уровня должны были бы перейти на третий, так как на втором уровне нет вакантных -орбиталей, переход на которые увеличил бы число неспаренных электронов. Переход же электронов на следующий уровень требует слишком большой затраты энергии, которая не скомпенсируется энергией образования химической связи, и потому такой переход в химической реакции не осуществим. [c.120]

    К ионизирующим излучениям принадлежат рентгеновские и у-излз ения разной жесткости, корпускулярные излучения тип быстрых электронов, позитронов, протонов, а-частиц, нейтронов. Проходя через вещество, энергия лучей поглощается атомами, которые ионизируются и возбуждаются, переходя в неустойчивое состояние. Последнее завершается изменением первоначальной структуры вещества. Косвенный эффект излучений проявляется в возникновении из клеточной воды свободных радикалов, способных возбудить цепь различных химических [c.102]

    Обсуждение в предыдущей главе направленной валентности было неполным, так как мы опустили почти весь круг вопросов, связанных с химией углерода. Это было сделано по той причине, что изучение углеродных соединений приводит нас к крайне важному и довольно неожиданному новому понятию. Можно проследить за его возникновением при попытке объяснить характерный факт четырехвалентности углерода, например в СН4. Согласно рис. 2.7, в низшем энергетическом состоянии атома углерода з) (28) 2рх) 2ру) имеются два неспаренных электрона. Спектроскопически это состояние является триплетным — Р. Такой атом, вообще говоря, должен быть двухвалентным с валентным углом примерно таким же, как и в молекуле воды . Единственный способ получить валентность, равную четырем, состоит в том, чтобы возбудить атом, поместив один из 25-электронов в незанятое состояние 2рг, и образовать тем самым конфигурацию 1з) 28) (2рх) 2ру) 2рг). Поскольку теперь имеются четыре неспаренных электрона (раздел 5.9), такое состояние будет квинтетным — Энергия этого возбуждения может быть определена из спектроскопических данных расчет [5] и экспериментальные исследования [346] дают приблизительно одно и то же значение, а именно около 96 ккал1моль . После того как возбуждение произошло, получилось четыре неспаренных электрона, которые могут спариваться с электронами четырех присоединенных групп, как это было описано в гл. 7. Однако именно здесь имеется трудность три таких электрона обладают орбиталями типа р, а четвертый — орбиталью типа В предположении полного спаривания электронов, при котором энергия выражается формулой (7.25), должны, очевидно, иметься три однотипные связи и четвертая связь другого типа. [c.211]

    При работе с микрообъемным детектором выходящие из колонки Голея газы направляются в капиллярную трубку, тогда как аргон со скоростью около 50 мл1мин вводится через верхнюю часть детектора. Выходящий из колонки поток проходит через детектор и выходит через боковые отверстия в камере, как и в первом случае. Конструкция выходной части капиллярной трубки такова, что величина напряженности поля наибольшая около выхода. Следовательно, в этой области концентрация метастабильных атомов аргона наиболее велика, так как только здесь электроны преобретают достаточную скорость, чтобы возбудить атомы аргона до метастабильного состояния. [c.53]

    Последний тип гибридизации с использованием только 5- и р-орбиталей можно показать, рассмотрев, как атом углерода соединяется с четырьмя атомами водорода при образовании молекулы метана. Снова необходимо сначала возбудить атом углерода из основного состояния 8 28 2р , в котором число неспаренных электронов недостаточно для образования четырех связей, в валентное состояние 18 28 2рх2ру2рг. Затем четыре орбитали комбинируются и образуют набор из четырех эквивалентных орбиталей, которые называют зр -гибридными. Это показано на рис. 3.22. Эти орбитали направлены к вершинам тетраэдра и, таким образом, СН4 имеет тетраэдрическую конфигурацию. [c.93]

    Элементы первого короткого периода подчиняются правилу октета. Поскольку в их валентной о 0олочке имеется лишь четыре орбитали (2s, 2рх, 2ру, 2pz), эта оболочка никогда не содержит больше восьми электронов. Это значит, что максимальное число двухэлектронных связей (электронных пар) равно четырем. Правило октета уже не соблюдается для элементов второго короткого периода. Так, фосфор 3s 3p 3d можно возбудить в валентное состояние 3s 3p 3d при столь незначительной затрате энергии, что образование двух дополнительных связей вполне ее компенсирует. С другой стороны, для промотирования азота 2s 2p в любое состояние с пятью неспаренными электронами, например 2s 2p 3d потребовалось бы больше энергии, что уже не компенсируется выделением энергии при образовании двух лишних связей. [c.232]

    В основном состоянии атом углерода имеет электронную конфигурацию 15 25 2р2, поэтому для того, чтобы стало возможным нормальное образование четырех ковалентных связей, необходимо возбудить атом в состояние 2з2рх2ру2р2 (разд. 3.7). Ион С + не возникает ни в одном нормальном химическом процессе, а возможно, и существует в некоторых карбидах наиболее электроположительных металлов. [c.306]


Смотреть страницы где упоминается термин Электронное состояние возбужденное: [c.373]    [c.163]    [c.416]    [c.83]    [c.143]    [c.126]    [c.143]    [c.308]    [c.170]    [c.123]    [c.91]    [c.19]    [c.20]    [c.100]    [c.8]    [c.209]    [c.92]   
Симметрия глазами химика (1989) -- [ c.272 ]




ПОИСК





Смотрите так же термины и статьи:

Возбужденное состояние

Состояни возбужденное

Состояния электрона

Электронно-возбужденные состояни



© 2024 chem21.info Реклама на сайте