Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение катионов IV группы

    Осаждение сульфид-ионами можно также вести в растворах, содержащих комплексные ионы. Так производят отделение катионов, образующих сульфосоли, от катионов, не образующих сульфосолей, например разделение катионов группы мышьяка и меди. [c.371]

    Работа 21. Разделение катионов IV аналитической группы [c.7]

    Работа 21. Разделение катионов IV аналитической группы в 0,5 М соляной кислоте [c.350]


    Работа 22. Разделение катионов IV аналитической группы с помощью 2 М раствора иодида калия в качестве электролита [c.351]

    Работа 23. Разделение катионов IV аналитической группы, образующих аммиакаты [c.352]

Таблица 102. Схема разделения катионов на аналитические группы кислотно-щелочным методом Таблица 102. <a href="/info/68922">Схема разделения</a> катионов на <a href="/info/5120">аналитические группы</a> <a href="/info/201400">кислотно-щелочным</a> методом
    Группа НС1. На схеме Д.6. представлен ход разделения катионов этой группы . [c.68]

    Напишите уравнения реакций, лежащих в основе пероксидного и аммиачного методов разделения катионов 111 группы на подгруппы. [c.281]

    Когда сероводород применяется не в качестве группового реактива для разделения отдельных групп катионов друг от друга, а для обнаружения или отделения индивидуальных ионов, образующих с З - -ионами характерные соединения, то такие методы анализа катионов называют методами с ограниченным применением сероводорода. [c.5]

    Разделение катионов второй группы на подгруппы. К раствору [c.121]

    Разделение катионов второй группы на под -группы (раствор 3) [c.124]

    Разделение четвертой группы катионов на подгруппы. К раствору 2 прибавляют водный раствор аммиака до щелочной реакцин и ацетатную бус )ерную смесь до слабокислой реакции (рН< 3). Затем добавляют раствор (NH4)2S, при этом выпадает осадок сульфидов, который отделяют центрифугированием  [c.139]

    Фосфат-ионы образуют осадки с катионами третьей аналитической группы, а также с катионами магния и щелочноземельных металлов. Следовательно, присутствие фосфатов затрудняет разделение катионов второй и третьей аналитических групп и их необходимо удалить. Большие преимущества перед химическими методами отделения фосфатных ионов от катионов имеет ионный обмен на анионите (например, на смоле ЭДЭ-ЮП) в С1-форме. [c.140]

    Как пример приводим методики разделения катионов некоторых аналитических групп и неорганических соединений, а также их анализ методом ТСХ. [c.140]

    Таким образом, после разделения катионов на группы получили четыре пробирки, содержащие а) осадок хлоридов и сульфатов катионов 1 и II групп б) раствор смесн катионов III и VI групп в) раствор аммиакатов катионов V группы и г) осадок карбонатов и основных солей катионов IV группы. Каждый из этих объектов анализируют отдельно. [c.266]


    Схема 1. Разделение катионов на группы в сероводородном методе систематического анализа [c.423]

    Схема П. Разделение катионов на группы в кислотно-основном методе [c.424]

    Для разделения катионов на аналитические группы пользуются различными методами. Наиболее распространены щелочной и сероводородный методы. Щелочной метод основан на различном отношении основных и амфотерных гидроксидов к щелочам, а сероводородный — на различной растворимости сульфидов металлов при различных pH раствора. В данной работе рассматривается сероводородный метод. [c.257]

    Затем проводят разделение катионов различных фупп с помощью групповых реагентов и в каждой фуппе разделяют и открывают кат ионы относящиеся к данной группе. [c.316]

    При систематическом анализе катионов по кислотно-основному методу используют групповые реагенты, с помощью которых проводят разделение катионов по группам, после чего в каждой группе отделяют и открывают индивидуальные катионы, [c.324]

    Zn(0H)2 — амфотерными свойствами, что используется в качественном анализе для разделения катионов III группы на две подгруппы. К первой подгруппе относят катионы Fe +, Fe +, Мп +, ко второй — катионы А1 +, Сг +, 2п +. [c.289]

    При систематическом ходе анализа катионы разделяются на группы с помощью групповых реактивов. Был предложен ряд методов разделения катионов на группы. Лучшая класси фикация—деление катионов на 5 аналитических групп (табл. 4), Она основана на применении пяти групповых реак [c.238]

    В бессероводородных методах второй группы соединения, содержащие серу в степени окисления —2, вообще не применяются. Здесь используется различная растворимость хлоридов, сульфатов, фосфатов, гидроксидов и т. п. В качестве примера приводится разделение катионов по группам при работе по кислотно-щелочному методу. [c.20]

    Указанное разделение катионов на пять аналитических групп представляет большие удобства для химика-аналитика. Действуя соответствующими реактивами в определенной" последовательности, можно сложную смесь, состоящую из всех катионов, разделить на пять аналитических групп и каждую выделенную группу исследовать отдельно. [c.83]

    Хелатообразующие иониты, содержащие фрагменты комплексонов бензольного ряда (хелоновые смолы), можно рассматривать как поликомплексоны [1, 548, 549]. Они обеспечивают избирательную сорбцию ряда катионов металлов, что, как известно, имеет ряд преимуществ при разделении катионов перед избирательной десорбцией ионов, вступивших в реакцию с ионогенными группами универсальных ионитов. [c.295]

    После того, как в большинстве буферов на поверхности кварцевых капилляров из-за диссоциации силанольных групп образуются отрицательные заряды, вблизи стенки индуцируются положительные заряды и электроосмотический поток направлен к катоду. Это обусловливает необходимость расположения детектора вблизи катодного пространства. ЭОП помогает переносить зоны проб к детектору настолько, что при достаточно больших значениях ЭОП к катоду могут переноситься даже анионы. Пример разделения катионных, анионных и нейтральных веществ посредством капиллярного зонного электрофореза (КЗЭ) приведен на рис. 2. При этих условиях все незаряженные молекулы перемещаются с одинаковой скоростью, равной скорости электроосмотического потока, и не могут быть разделены, в то время как разделение заряженных ионов возможно благодаря их различной электрофоретической подвижности. [c.8]

    На чем основано разделение катионов IV и V аналитических групп (кислотно-основная классификация) Каков состав раствора и осадка Написать уравнения реакций. [c.29]

    Работа 22. Разделение катионов IV аналитической группы с по мощью 2 М раствора иодида калия в качестве электролита. Работа 23. Разделение катионов IV аналитической группы, об разующих аммиакаты................ [c.7]

    Приведенные схемы систематического хода разделения катионов в основном соответствуют классическо,му анализу по Фрезениусу. При этом катионьЕ металлов делят на следующие группы  [c.67]

    Отклонение pH раствора от 9,2 в сторону повышения также может привести к нежелательным последствиям. В этом случ.ае в присутствии солей магния вместе с карбонатами катионов второй группы будет соосаждаться карбонат гидроксомагния и, следовательно, карбонат аммония не выполнит своей основной задачи разделения катионов первой и второй аналитических групп. [c.248]

    Разделение катионов I и II аналитических групп. 15—25 капель анализируемого раствора помещают в коническую пробирку и добавляют несколько капель раствора аммиака до щелочной реакции, а затем по каплям раствор NH4 I до получения раствора с рН =9, Смесь нагревают на водяной бане до 60 — 70°С, добавляют к ней 10—12 капель раствора (NH4)2 03, хорошо перемешивают и полученный осадок с раствором выдерживают на водяной бане в течение 1—2 мин при той же температуре. Осадок центрифугируют, а к раствору, не сливая его с осадка, добавляют одну каплю раствора (NH4).j 0 , для определения полноты осаждения карбонатов второй группы. Появление мути означает, что полнота осаждения не достигнута в этом случае к раствору добавляют 2—3 капли раствора (ЫН4)2СОз, вновь выдерживают на водяной бане и повторно центрифугируют. После достижения полноты осаждения центрифугат осторожно сливают с осадка в отдельную пробирку и сохраняют для анализа катионов первой группы. [c.253]


    Существуют специальные сорта бумаги с высоким содержанием карбкосильных групп (для разделения катионов), а также пропитанные ионообменниками или другими адсорбентами, [c.352]

    Различное отношение Sb и Sb к избытку NaOH и КОН, хорошая растворимость Mg(0H)2 в избытке раствора аммиака в присутствии солей аммония и т. п. обусловливают нечеткость разделения катионов по группам. [c.106]

    Разделение катионов четвертой группы на подгруппы( (раствор 2) СНзСООКа Осадок 2 i HgS. uS, dS, oS, NiS, BijSg, FeS Раствор 3 Mn-+-, Mg-+-noHH  [c.137]

    Е. С. Бойчинова, А. И. Палицына и В. А. Шичко [82] описали методику разделения катионов четвертой аналитической группы в качественном химическом полумикро-анализе на анионите ЭДЭ-10. [c.142]

    Большую серию экспериментальных исследований по анализу неорганических ионов методом тонкослойной хроматографии провел X. Зайлер [111]. Им выполнен анализ катионов, предварительно разделенных на группы, и анализ анионов. Он установил, что в условиях тонкослойной хроматографии неорганических ионов нельзя пользоваться величиной Rf для идентификации ионов, так как эта величина не является постоянной, как это имеет место в бумажной хроматографии. Величина Rf зависит не только от свойств носителя и состава подвижного раствора, но и от присутствия сопутствующих ионов. Поэтому X. Зайлер вынужден ограничиться только лишь указанием на постоянную последовательность высот поднятия ионов на тонкослойной хроматограмме, полученной по восходящему методу. При обработке хроматограмм можно точно идентифицировать отдельные ионы по известным реакциям обнаружения. [c.185]

Рис. 51. Разделение методом тонкослойной хроматографии а — катионов группы меди б — катионов металлов группы сернистого аммония (по X. Зайлеру [111]) Рис. 51. <a href="/info/255889">Разделение методом тонкослойной хроматографии</a> а — <a href="/info/5120">катионов группы</a> меди б — катионов <a href="/info/1047470">металлов группы сернистого аммония</a> (по X. Зайлеру [111])
    Катионы группы меди (Си +, РЬ " ", d +, В1 +, Н ) разделяют на слое силикагель — гипс. Одновременно на пластинку наносят контрольные пробы этих же катионов по 0,002 мл 0,1 м растворов Н (N03)2 Сс1 (СНзСОО)2 BiONOз РЬ (N03)2 и Си (СНзСОО)2. В качестве подвижной фазы используют смесь 100 мл н-бутанола, 20 мл — 1,5 МНС1 и 0,5 мл ацетонилацетона, добавляя последний как слабый комплексообразователь для уменьшения хвостов . Разделение продолжается около двух часов. Для обнаружения пятен хроматограмму опрыскивают 2%-ным раствором К1, высушивают, держат над парами аммиака, после чего помещают в камеру, заполненную сероводородом. [c.140]

    Разделение на группы. Общая схема деления на группы дана в табл. 8.3 (см. приложение, схема П). В анализируемом растворе прежде всего отделяют катионы 1 и П групп. Для этого 10— 15 капель раствора помещают в пробирку и добавляют по каплям смесь 2 М НС1 и 1 М H2SO4. Оставляют осадок на 10 мин, затем его центрифугируют и промывают водой, подкисленной НС1. В осадке смесь хлоридов и сульфатов Ag+, РЬ +, Ва +, Са +. Возможно и присутствие основных солей сурьмы. В растворе катионы П1—VI групп. [c.266]

    Разделение катионов на группы проводят до тех пор, пока останется такая смесь катионов, из которой с помои1,ью качественной специфической реакции может быть обнаружен любой из них в присутствии остальных. [c.258]

    Разделение катионов второй аналитической группы иа подгруппы. Если предварительные испытания показали напичи в растворе катионов железа(П) Fe ", то перед действием группового реагента их окисляет азотной кислотой до катионов железа(П1) Fe ". Для этого к 5—8 мл анализируемого раствора прибавляют 2—4 капли концентрированного раствора азотной кислоты HNO3 и нафевают смесь до кипения. При этом железо(П) переходит в железо(1П). Если катионы Fe " в анализируемом растворе отсутствуют, то указанную операцию не проводят. [c.306]

    Многие реакции в качественном анализе и титриметрическом методе осаждения (аргентометрия, меркурометрия) основаны на образовании мало растворимых соединений ( 19, 21). Повышенная растворимость галогенидов щелочных металлов объясняется ослаблением сил взаимодействия между ионами в кристаллической решетке. С этим связано отсутствие группового реагента на щелочные металлы. Вещества со слоистыми или молекулярными решетками растворяются лучше, чем вещества с решеткой координационной структуры. Это используют в химическом анализе для разделения катионов подгруппы соляной кислоты от катионов подгруппы сероводорода. Катионы серебра и свинца (II) образуют хлориды, имеющие решетки координационной структуры и поэтому менее растворимы. Хлориды СиС и СсЮЦ имеют слоистые решетки и поэтому хорошо растворимы, как и близкий к ним по строению решетки 2пС 2. Растворимость солеи связана также с радиусами их ионов. Соли с большими катионами и малыми анионами хорошо растворимы, а соли с малыми катионами и большими анионами — плохо (Яцимирский). Растворимость вещества зависит от соотношения полярностей растворенного вещества и растворителя. Установлено также, что растворимость солей зависит от их химической природы, например, для гидроокисей, сульфатов, хлоридов, фторидов элементов 1-й и 2-й групп периодической системы  [c.69]

    Во всех случаях можно регулировать скорость и полноту выделения сульфидов металлов. Наиболее удобен тиоацетамид как групповой реагент и для разделения катионов металлов внутри группы сероводорода. Он нетоксичен, реагирует почти стехиометрически, осадки сульфидов крупнозернистые, мало загрязнены посторонними катионами, легко фильтруются и центрифугируются, мало пептизируются. Осаждение быстрее и проще, чем сероводородом. [c.102]

    Поэтому для разделения катионов IV и П1 аналитических групп осаждение сероводородом проводят сначала в кислой среде. Затем отделяют выпавший осадок сульфидов IV группы и фильтрат подщелачивают NH4OH, при этом избыток сероводорода нейтрализуется аммиаком с образованием (N1 4)28. Вследствие этого концентрация S -ионов в растворе повышается и выпадают сульфиды и гидроокиси катионов 111 аналитической группы. Для достижения полноты осаждения приливают (NH4)2S. [c.294]

    Близкие по св-вам катионы металлов, напр, лантаноиды, разделяют в присут. комплексообразующих агентов — лимонной, этиленднаминтетрауксусной к-т и др. Поведение металла в этом случае определяется степенью связывания его в комплекс и зарядом последнего. Для разделения катионов переходных металлов примен. селективные иониты с комплексообразующими фиксиров. группами, напр, иминодиацетатного типа. Иониты использ. также для отделения электролитов от неэлектролитов (в т. ч. от сахаров, аром, углеводородов) часто одновременно происходит разделение обеих групп в-в по механизму ионного обмена и распределения. [c.226]

    Хим методы элементного анализа неорг. соединений Основаны на ионных р-циях и позволяют обнаруживать элементы в форме катионов и анионов Для К а катионов используют разл схемы систематич анализа с последоват разделением катионов на группы и подгруппы, внутри к-рых возможна идентификация отдельных элементов Аналит группы обычно именуют по групповому реагенту [c.359]


Смотреть страницы где упоминается термин Разделение катионов IV группы: [c.21]    [c.21]    [c.64]    [c.257]   
Физико-химичемкие методы анализа (1964) -- [ c.318 ]

Физико-химические методы анализа (1964) -- [ c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение на группы



© 2025 chem21.info Реклама на сайте