Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий определение в цинковых рудах

    Индий в небольших количествах почти всегда находится наряду с кадмием в цинковых рудах. Полярографическое определение индия в присутствии цинка не встречает никаких препятствий, так как потенциалы полуволн катионов обоих металлов сильно различаются между собой, причем цинк восстанавливается при значительно более высоком напряжении. Значительно труднее определить полярографически небольшую примесь индия в присутствии кадмия. В солянокислых растворах катионы обоих металлов восстанавливаются при одном и том же напряжении и их волны сливаются в одну. В сернокислых или азотнокислых растворах индий вследствие большого перенапряжения восстанавливается даже после кадмия. Поэтому данные растворы совершенно не подходят для полярографирования небольших количеств индия в присутствии преобладающей массы кадмия. [c.252]


    Определение кадмия в цинковых рудах [69] [c.152]

    Обжиг концентратов сульфидных цинковых руд ведут при такой температуре (850—900 °С), чтобы основным продуктом был оксид цинка, а сульфат цинка образовывался в малом количестве. Сульфиды сопровождающих металлов — свинца, железа, кадмия, меди — также образуют оксиды. Нежелательный смешанный оксид 2пО-Ре Оз (феррит) образуется при температурах около 600°С реакция интенсифицируется повышением температуры, но для ее протекания требуется определенное время, так как она связана с диффузией в твердом состоянии. [c.385]

    Для определения свинца в цинковой руде методом добавок навеску руды массой т (г) растворили в смеси кислот, восстановили железо(П1), добавили желатину и разбавили раствор до 200,0 мл. Аликвоту объемом 20,00 мл поместили в электролизер и измерили высоту /г полярографической волны при Е = -0,45 В (НКЭ). При этих условиях ионы меди, цинка, кадмия не мешают определению свинца. После добавления в электролизер стандартного раствора (мл) 0,0020 М РЬ(М0д)2 получили высоту волны 2- [c.264]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Атомно-абсорбционное определение кадмия в цинке и цинковых рудах [c.106]

    Анионит ЭДЭ-10 П используют при определении малых содержаний кадмия в сульфидных свинцово-цинковых рудах, содержащих Сг, N1, Т1 и до 20% Fe (все они сорбируются из 2 М НС1). Кадмий десорбируют 0,05 М НС1 [272]. [c.156]

    Разработаны методы определения цинка в золах растений [15], в почвах [17], в фосфористых бронзах [190], в винах [205], в меди, алюминии, цирконии, сплавах на их основе [8, 36], в цирконии [210], в кадмии [175], в металлах [248] в биологических объектах [125, 175], в сталях [175], в металлургических образцах [8, 9] в металлическом золоте [246] методы определения цинка и кадмия в рудах, свинце, ионно-обменных смолах, электролитических растворах [175] методы определения кадмия в биологических жидкостях [125], в цинке и цинковых рудах [69, 175], в цирконии с использованием экстракции [36] методы определения ртути в различных объектах [70, 125, 151, 175, 197, 211, 212, 213]. [c.145]

    УПРОЩЕННОЕ (УНИФИЦИРОВАННОЕ) ОПРЕДЕЛЕНИЕ МЕДИ (ЦИНКА, КАДМИЯ) В МЕДНЫХ И СВИНЦОВО-ЦИНКОВЫХ РУДАХ [c.34]

    Руды (продолжение) ртутные, определение мышьяка 6219 свинцово-цинковые, опреде-ление меди 5610, 5617 свинца 5610, 5618 цинка, кадмия и общей 5 5610 [c.384]

    В условиях определения цинка флуоресцируют лишь кадмий и индий [49], но многие элементы, в том числе такие постоянные компоненты минерального сырья, как железо, титан и магний, в значительной степени тушат свечение цинкового комплекса. Поэтому для определения цинка в рудах и минералах необходимо предварительно отделять его от большинства посторонних элементов. С этой целью применяют экстракцию рода-нидного комплекса цинка изо-амиловым спиртом из фторидно-сернокислой среды. При этом вместе с цинком извлекаются медь и частично кадмий, кобальт и никель эти четыре элемента отделяют путем промывки экстракта подкисленным раствором роданида, после чего цинк реэкстрагируют аммиачным раствором хлорида аммония [1]. Однако следует учитывать, что при таком способе выделения малых количеств цинка во всех стадиях процесса возможна его общая потеря в размере до 25% от исходного содержания [8]. [c.246]

    УПРОЩЕННОЕ (УНИФИЦИРОВАННОЕ) ОПРЕДЕЛЕНИЕ КАДМИЯ В СВИНЦОВО-ЦИНКОВЫХ И МЕДНЫХ РУДАХ [c.26]

    К. Мар и X. Оле [45] разработали метод отделения кадмия от цинка осаждением его 5%-ным раствором тиомочевины и солью Рейнеке [NH4 r(NH3)2(S N)4-H20] в дистиллированной воде. С помощью серной или соляной кислоты устанавливают кислотность раствора, содержащего кадмий, в пределах 0,1—1,0 н. и добавляют растворы тиомочевины и соли Рейнеке до тех пор, пока жидкость не примет темно-розовой окраски. Охлаждают раствор в ледяной бане, периодически помешивая, до полного осаждения. Осадок отфильтровывают и сушат при 110° С в течение 1 ч (1 мг осадка эквивалентен 0,1247 мг кадмия). В дальнейшем Дж. Р. Де Воэ и В. В. Мейнке [21] доказали простоту и надежность этого метода определения кадмия в цинковых рудах. [c.120]

    Обжиг концентратов сульфидных цинковых руд производится при такой температуре (850—900 °С), чтобы основным продуктом была окись цинка, а сульфат цинка образовывался в малом количестве. Сульфиды сопровождающих металлов — свинца, железа, кадмия, меди и др. также образуют окислы. Нежелательный феррит цинка ZnO-FeaOg образуется при температурах около 600 °С реакция интенсифицируется повыщением температуры, но требует определенного времени, так как связана с диффузией в твердом состоянии. [c.270]

    Гравиметрически кадмий обычно определяют в виде сульфида, осаждая его сероводородом и удаляя мышьяк, сурьму и олово при помощи аммиака. Цинковые руды растворяют в царской водке, а нерастворимый остаток удаляют фильтрованием. Фильтрат разбавляют по крайней мере в 10 раз по отношению к его первоначальному объему. Сульфид цинка удаляют соляной кислотой. В некоторых случаях кадмий удобнее определять электролитически с использованием в качестве электролита раствор цианида калия. К. Е. Мур и Т. А. Робинсон [49] показали, что реакция кадмия с 1-фенил-тетразолон-5-тионом дает легко фильтруемый осадок, который можно высушить при 100° С без разложения. Несмотря на то что реагент не совсем избирателен, высокая чувствительность реакции кадмия позволяет использовать метод для гравиметрического определения (1 мг осадка эквивалентен 0,2408 мг кадмия). [c.120]

    Внутренний электролиз целесообразно применять для отделения примесей от основного компонента при анализе металлов, руд и солей, как, например, при определении висмута, меди и серебра в свинце и припоях висмута—в свинцовых рудах кадмия, меди и никеля—в цинковых рудах и цинке свинца—в рвотном камне С4Н4К(ЗЬО)Ов меди—в железе, стали или кадмии меди и олова—в алюминиевых сплавах и, наконец, для отделения ртути от других металлов при анализе латуни и бронзы з. В некоторых случаях определение может быть произведено непосредственным взвешиванием электрода, но обычно после электролиза анализ заканчивают, пользуясь методами, соответствующими техническим условиям. [c.155]


    Одним из преимуществ гидроэлектрометаллургических методов является то, что они часто позволяют более полно по сравнению с металлургическими переделами перерабатывать бедные и полиметаллические руды с раздельным получением всех полезных компонентов, а основного — в виде продукта высокой чистоты. Так, цинковые заводы одновременно с цинком выпускают кадмий, свинец, соли или концентраты меди и кобальта, ряд редких металлов и концентратов, а также серную кислоту медерафннировочные заводы — медь и шламы, содержащие благородные металлы. Стоимость попутно получаемых продуктов — важный фактор при определении рентабельности гидроэлектрометаллургического производства по сравнению с пирометаллургическим. [c.233]

    Спектральные методы предложены для определения таллия в кадмии [69, 101, 173, 795], цинке [794, 814], свинце [275, 477, 499, 829], олове [232, 355], в сплавах [888], пирите [498], цинковой об.манке [467], силикатах [157, 819, 820], рудах [121, 255, 266, 642, 888], почве [670], воздухе [36] и других объектах [8, 86а, 111а, 156, 284, 285, 293, 473, 486, 497, 553, 556, 565, 648, 741, 776, 889]. [c.124]

    Метиловый фиолетовый. Этот краситель, также принадлежащий к группе трифенилметановых, образует с Sb lg ионный ассоциат, экстрагирующийся органическими растворителями. Чувствительность экстракционно-фотометрического определения Sb с его применением ниже, чем с применением бриллиантового зеленого и кристаллического фиолетового при использовании бензола е = 5,4-10 при Яшах = 608 нм (2 Л/HG1) для H lg е = = 8,1-10, Ятах = 590 нм (4 М НС1) [327]. Несмотря на указанный недостаток, метиловый фиолетовый довольно часто используется для определения Sb в различных материалах. С его применением определяют Sb в алюминии [254], жаропрочных сплавах [497], железе, чугуне, сталях, железных рудах и ферросплавах [84, 444, 975, 1406], кадмии [456], меди и ее сплавах [93, 341, 359, 489, 490], молибдене и ферромолибдене [401, 645, 655], никеле и его сплавах [502], оловянных рудах и продуктах их переработки [596], припоях [277], рении [645], свинце [1105, 1106], таллии [320], титане [498], хроме и его сплавах [502, 545], цинке, цинковых сплавах, злектролитах и растворах цинкового производства [332, 456, 700], тонких напыленных слоях стибнита [63]. [c.49]

    Полярографические методы с применением ртутного капающего электрода широко применяются для определения Sb в различных промышленных и природных материалах, в том числе в железе, чугуне и сталях [503, 823, 1037, 1216, 1264, 1309, 1478, 1574], полупроводниковых материалах [123, 343, 344, 451, 680, 720, 721, 1071], свинце и его сплавах [130, 142, 144, 148, 154, 220, 230, 246], рудах и концентратах [204, 1036, 1635], цицке и его солях [67, 416, 418, 420], цинковых электролитах [417], титане и его соединениях [822, 823, 1174, 1548], меди [1672], олове [1201], молибдене [644], кадмии [1584], цирконии и его сплавах [823], типографских сплавах [763, 820], ферромарганце [1352], манга- [c.64]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    При анализе карбонатов кальция и магния, смитсонита и цинковых обманок используют горизонтальную дугу переменного тока (8а) между угольными электродами, наполненными Na l. Пробу смешивают с Naa Og и NaNOg и вводят в дугу на полосках бумаги. Аналитической парой линий служит d 3261,0 — Sb 3232,5 А. Метод применим в интервале концентраций 0,02— 0,05% d, средняя квадратичная ошибка 11—17% [359]. При совместном определении d и Zn в рудах и технологических продуктах на дифракционном спектрографе ДФС-13 (при дисперсии 1 А]мм) линия кадмия 3261,0 А полностью отделяется от линий железа даже при анализе железных руд. Для идентичности форм нахождения кадмия и цинка в пробах и эталонах последние готовят разбавлением пустой породой цинкового концентрата с известным содержанием обоих элементов. Эталоны и пробы разбавляют этой смесью в отношении 1 4 и набивают в угольные электроды. Спектры возбуждают в дуге постоянного тока (15а) и фотографируют на фотопластинках типа СП-3 или СП-2 в течение 30 сек. Ширина щели спектрографа 0,030— 0,035 мм. При анализе проб с содержанием кадмия >0,1% спектры фотографируют через трехступенчатый ослабитель. Определение производят по линиям d — 3261,0 (Jan) — Ge 3260,5 А (J p) градуировочные кривые строят в координатах lg (Jan/ p) — с учетом фона вблизи линий кадмия. Интервал определимых концентраций [c.167]

    В природе минералы кадмия крайне редки, сколько-нибудь заметных концентраций кадмия нет ни в одном месторождении. Кадмий обычно присутствует в цинковых и полиметаллических рудах, (ВХОДЯ в виде изоморфной примеси в сфалерит. При обогащении кадмий концентрируется вместе с цинком, далее переходит в огарок, выщелачивается серной кислотой также вместе с цинком. В процессе гидрометаллургического получения цинка кадмий выводится на определенном этапе в отдельный продукт. Поэтому фазовому анализу подвергаются не рудные продукты, а продукты гидро- и пирометаллургической переработки кеки, вельцокислы, возгоны. [c.179]


Смотреть страницы где упоминается термин Кадмий определение в цинковых рудах: [c.168]    [c.215]    [c.179]    [c.173]    [c.158]    [c.125]    [c.183]   
Химико-технические методы исследования (0) -- [ c.579 ]




ПОИСК





Смотрите так же термины и статьи:

Кадмий определение

Цинковая



© 2025 chem21.info Реклама на сайте