Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пиридин, нитрование

    Фуран, пиррол и тиофен вступают в реакции электрофильного замещения с большей легкостью, чем бензол, тогда как пиридин и хинолин вступают в эти реакции труднее бензола. По сравнительной легкости, с которой эти гетероциклические -соединения и бензол вступают в указанный тип реакций (нитрование, сульфирование, галоидирование),, их можно расположить в следующий ряд, в котором слева от бензола располагаются соединения, обладающие большей ароматичностью и легче, чем бензол, вступающие в эти реакции, а справа—соединения, вступающие в них труднее бензола  [c.56]


    Реакции, характерные для ароматических соединений (сульфирование, нитрование, ацилирование), протекают с замещением атомов водорода, стоящих в а-положении. В качестве примера может служить реакция сульфирования. Как показал А. П. Терентьев, эта реакция может быть осуществлена с фураном, тиофеном, пирролом и рядом их гомологов путем нагревания сульфируемого соединения с продуктом присоединения серного ангидрида к пиридину (пиридинсульфотриоксид)  [c.580]

    Атом азота действует на ядро пиридина подобно акцепторным заместителям в молекуле бензола — уменьшает его электронную плотность и затрудняет атаку электрофильных реагентов, причем в кислой среде атом азота протонируется и его акцепторное действие усиливается. Поэтому нитрование, сульфирование, галогенирование пиридина протекают в жестких условиях и с низкими выходами продуктов замещения. Второй заместитель ввести не удается. [c.320]

    Поведение простейших пятичленных и шестичленных гетероциклических соединений, обладающих ароматическими свойствами—фурана, пиррола, тиофена и соответственно пиридина и хинолина, в реакции галоидирования, подобно их поведению в других реакциях электрофильного замещения (в реакциях нитрования и сульфирования — см. стр. 56 и 111) фуран, пиррол и тиофен галоидируются легче бензола, тогда как пиридин и хинолин галоидируются труднее бензола. [c.185]

    Нитрование. Замещение атома водорода на нитрогруппу удается осуществить практически во всех ароматических соединениях в моно- и дизамещенных бензола и нафталина, в антрацене, фенантрене и флуорене, в пятичленных ароматических гетероциклических соединениях, в пиридине и хинолине. [c.357]

    В пиридине более электроотрицательный атом азота оттягивает к себе электронную плотность, поэтому у атомов углерода в положениях 2, 4 и 6 наблюдается дефицит электронов и, следовательно, реакции электрофильного замещения предпочтительнее будут протекать по положению 3. Необходимо, однако, подчеркнуть, что электрофильное замещение (нитрование, галогенирование) у пиридина по сравнению с бензолом протекает значительно труднее  [c.417]

    Отметьте сходство и различие в свойствах пиридина и бензола. Объясните малую активность пиридина в реакциях электрофильного замещения и повышенную активность в реакциях нуклеофильного замещения. Приведите следующие реакции пиридина а) бромирования б) нитрования в) сульфирования  [c.209]

    Пиридин Нитрование Вероятно, одинаковые 7 [c.72]

    Из всех типов электрофильного замещения в ряду пиридина нитрование изучено, по-видимому, наиболее широко. Нитрование пиридинов с высокой основностью (рКа > 1) обычно идет через сопряженные кислоты, а реакция слабоосновных пиридинов (р/Са < —2,5), как правило, проходит со свободными основаниями [866]. В интервале значений рКа от —2,5 до -1-1 происходит обращение механизма и реакционной способности слабые основания нитруются гораздо легче своих аналогов с большей основностью. [c.29]


    В заключение следует отметить, что пиридин бромируется в исключительно жестких условиях, причем заместитель направляется в р-положение. Это можно объяснить следующим образом. Несмотря на то что реакцию бромирования в отличие от реакций нитрования и сульфирования проводят в отсутствие протонных кислот и реакции электрофильного замещения не предшествует протонирование атома азота и образование соли пиридиния с дезактивированным ароматическим кольцом, все равно и в данном случае наблюдается аналогичная дезактивация. [c.379]

    Простейшие пятичленные гетероциклические соединения, обладаюш,ие ароматическими свойствами—фуран, пиррол и тиофен,—сульфируются легче бензола, тогда как шестичленные гетероциклы—пиридин и хинолин—сульфируются труднее бензола, т. е. относятся к этой реакции электрофильного замещения так же, как и к рассмотренной выше (стр. 56—62) реакции нитрования. [c.111]

    Пиридин, подобно бензолу, подвергается галогенированию, нитрованию и сульфированию. Все эти реакции протекают труднее, чем с бензолом. Заместители вступают в ядро пиридина почти всегда в Р-положение. [c.431]

    Напишите для пиридина уравнения следуюш,их реакций с введением одной замещающей группы а ) бромирования б) хлорирования в) нитрования г) сульфирования. Назовите образующиеся соединения. [c.114]

    N-оксид пиридина примечателен своей способностью подвергаться нитрованию по положению 4 с образованием N-оксида 4-нитропиридина. О реакционной способности N-оксида пиридина по отношению к электрофилам см. [116, 161, 190]. [c.68]

    На одном из витаминных заводов произошел взрыв в мернике азотной кислоты на стадии нитрования пиридина при смешении азотной кислоты с уксусным ангидридом, который был ошибочно направлен в мерник при переключении запорной арматуры на трубопроводах, соединяющих мерники уксусного ангидрида и азотной кислоты. Для исключения подобных аварий проведена реконструкция технологической схемы. [c.118]

    Описан другой случай взрыва в мернике азотной кислоты на установке нитрования пиридина при случайном смешении азотной [c.362]

    Поставьте в ряд по легкости нитрования следующие соединения пиридин, лг-динитробензол, тиофен, п-ксилол, бензол. [c.181]

    Расположите в порядке легкости вступления в реакцию нитрования а) пиридин, а-пиколин, 2,4-диметилпиридин и 3,5-диметилпиридин б) карбазол, акридин, дибензотиофен. Укажите, в какие положения этих молекул преимущественно вступает нитрогруппа. [c.88]

    Пиридин и его гомологи обладают ароматическими свойствами они моГут вступать в реакции замещения (нитрование, галоидирование и сульфирование), однако эти реакции протекают гораздо труднее, чем с бензолом. [c.356]

    Инертность пиридина в реакциях электрофильного замещения обусловлена и тем, что атом азота в нем обладает значительной основностью, так как его неподеленная пара электронов не участвует в образовании ароматической системы и не может рассредоточиться. Поэтому при действии протонных агентов (нитрование, сульфирование) он образует соли пиридиния (102), а с бромом — комплексы (103), в которых атом азота является донором электронов. Появление положительного заряда на атоме азота приводит к еще большей дезактивации ароматического кольца. [c.544]

    Напишите уравнения реакций 1) нитрования пиридина, 2) сульфирования пиридина. Укажите условия реакций. Почему реакции электрофильного замещения в молекуле пиридина идут лишь в жестких условиях Нарисуйте предельные структуры о-комплексов, образующихся при электрофильном замещении в положения 2 и 3, и сравните их устойчивость. [c.225]

    В этом разделе рассматривается лишь нитрование простейших гетероциклических соединений, обладающих ароматическим характером нитрование пятичленных гетероциклических соединений—фурана, пиррола и тиофена, а также важнейших шестичленных азотсодержащих гетероциклических соединений—пиридина и хинолина. [c.56]

    Приведите реакции получения N-oк идa пиридина. Сравните отношение пиридина и К-оксида пиридина к электрофильным и нуклеофильным реагентам. Напишите для N-oк идa пиридина реакции а) нитрования б) сульфирования в) взаимодействия с бутиллитием. В какое положение вступают замещающие группы Приведите объяснения. [c.209]

    Нитрование нитратами металлов в присутствии концентрированной серной кислоты применяют обычно в тех случаях, когда для введения нитрогруппы в ароматическое и гетероциклическое ядро требуются особенно жесткие условия (см. нитрование нитробензола, стр. 31 бензойной кислоты, стр. 44 пиридина, стр. 59). [c.10]

    Нитрование пиридина двуокисью азота (115—120°) приводит также к р-нитропиридину и также с очень незначительным выходом (6—7%). Прямое нитрование никогда не приводит к получению а- и -нитропиридинов их получают [c.59]

    Гвайазулен образует только 1-ацетилгвайазулен. Нитрование азулена обычными методами провести не удается, но в некоторых случаях его можно осуществить при помощи тетранитрометана в пиридине, при этом получаются 1-нитро- и , 3-динитропроизводное. Азулен сочетается с диазотированным анилином с образованием 1-бензолазоазуле-на. при восстановлении которого получается крайне неустойчивый [c.504]


    П И р ИД И н. Нитрование пиридина протекает значительно труднее, чем нитрование бензола, и в гораздо более жестких условиях. Поведение пиридина в. реакции нитрования, как и в других реакциях электрофильного замещения, напоминает поведение нитробензола при этих реакциях вводимая в ядро пиридина группа всегда вступает в р-положение, т. е. атом азота в кольце пиридина оказывает такое же ориентирующее влияние, как N02-гpyппa в нитробензоле, направляя вступающий заместитель в ж-положение. Для введения нитрогруппы в ядро пиридина нитрование надо вести при 330°, причем к раствору пиридина в олеуме (18% 50з), т. е. к сернокислому пиридину, добавляется по каплям раствор азотнокислого калия в дымящей азотной кислоте, причем даже в столь жестких условиях выход р-нитропиридина составляет всего лишь 15%  [c.59]

    Реакции алкилирования и ацилирования по Фриделю—Крафтсу не характерны для пиридинов. Нитрование пиридина в исключительно жестких условиях (нитрат калия или натрия в олеуме при 300 °С) приводит к 3-нитропиридину с очень низким выходом (менее 3%). 3-Хлоропиридин образуется с удовлетворительным выходом при действии хлора на пиридин в присутствии 2 молей хлорида алюминия. Бромирование же бромом в олеуме при 130 °С идет с высоким выходом. Пиридин-З-сульфокислота образуется при действии олеума в присутствии каталитических количеств хлорида рту-ти(П) при 263 °С с выходом 73—80%. Все перечисленные реакции электрофильного замещения протекают в катионе пиридиния. [c.167]

    Гидрирование над N1 при 100—160"С Ацетилирование в пиридине Нитрование смесью ПКОз—НзРО, Ацетилирование в пиридине Ацетилирование в пиридине [c.110]

    Если аминосоединения более доступны, чем нитросоединения, то первые можно окислять до последних. Например, третичные нитроалканы нельзя получить из алкилгалогенида и нитрита серебра, а жидко- и газофазные методы нитрования едва ли можно рассматривать как методы лабораторного синтеза. Однако эти нитросоединения с превосходными выходами можно получать окислением первичных аминов, в которых аминогруппа связана с третичным атомом углерода [1]. Аналогично аминосоединения ряда пиридина и хинолина легче доступны, чем соответствующие нитросоединения, поскольку известны методы прямого аминирования. Окисление их перекисью водорода в серной кислоте дает удовлетворительные выходы нитросоединений [2]. К тому же этот метод синтеза иногда имеет ценность, если хотят получить соединение с определенным положением заместителей в ароматическом кольце. Например, окисление легко доступного 2,4,6-триброманилина перекисью водорода и малеиновым ангидридом [3] представляет интерес как метод получения 2,4,6-три-бромнитробеизола (90%). Образующаяся в этом случае надмалеиновая кислота несомненно является очень сильным окислителем для аминов, уступающим только надтрифторуксусной кислоте (пример а). При окислении ароматических аминов используют лить надкислоты. [c.503]

    Химия пиридина за последнее время значительно расширилась благодаря использованию в качестве исходного вещества для синтезов N-OKH H пиридина. Охай, а позже и Ден-Хертог показали, что N-окиси пиридиновых соединений легко замещаются в а- и главным образом Б - -положении электрофильными, а иногда такл<е нуклеофильными группами (нитрование, хлорирование и т. д.). Поскольку связанный с азотом 0-атом во многих случаях может быть затем удален путем восстановления, этот метод позволяет иногда получить а- и 7-замещен-ные производные пиридина и его гомологов, трудно доступные другими способами. [c.1018]

    Поэтому в пиридине элект зофильное замещение осуществляется только в р-положение. Фактичес1 и замещение такого рода может быть осуществлено лишь в жестких условиях. Так, бромирование возможно только в паровой фазе при температуре около 300°С, а сульфирование и нитрование может быть проведено лишь с трудом. Попытки осуществления реакции Фриделя—Крг.фтса неизменно приводили к отрицательным результатам. Таким образом, ароматический характер пиридина соответствует больше нитробензолу, чем бензолу. [c.194]

    Смесь азотной и серной кислот применяется также для нитрования трудно нитрующихся соединений, например, пиридина. По мнению ряда исследователей, содержащийся в пиридине третичный атом азота оказывает тормозящее действие на нитрование при нейтрализации отрицательного влияния третичного азота введением амино- или гидроксильной групды нитрование пиридина протекает удовлетворительно. [c.45]

    Нитрующая смесь применяется для нитрования некоторых гетероциклических соединений, например пиридина. Пиридин в реакции нитрования, как и в других реакциях электрофильногозамещения (галогенирования, сульфирования), весьма инертен. Он нитруется при 330° С раствором азотнокислого калия в дымящей серной кислоте. При этом получается р-нитропиридин с выходом только 15%. [c.90]

    Обычное нитрование азотной кислотой приводит к полному разрушению пиррольного кольца. Концентрированная серная кислота вызывает сильное осмоление пиррола. Действием на пиррол продукта присоединения серного ангидрида к пиридину с количественными выходами получается а-пирролсульфоноеая кислота. Соли ее являются вполне устойчивыми соединениями. [c.586]

    При действии на пиридин хлора или брома сначала образуются непрочные продукты присоединения галоида к азоту. Вступление галоидов в ядро, а именно в -положения, происходит только при нагревании до 300—400 °С. Аналогично, только при нагревании пиридина с концентрированной серной кислотой выше 300°С можно получить пиридинсульфоновую-3 кислоту. 3-Нитро-пиридин получается нитрованием пиридина смесью селитры и серной кислоты при 300 °С. [c.611]

    Камфен. Сульфокислоты камфена ранее не были извести Камфен сульфируется пиридин-сульфотриоксидом до моносул фокислоты с выходом 95%. Наличие сульфогруппы в боков( цепи доказывается окислением перманганатом, в результате че сера отщепляется в виде сульфат-иона, и выделяется камф нилон Образование соединений с сульфогруппой, находящей в боковой цепи, аналогично образованию подобных соединен при реакциях бромирования и нитрования [c.270]

    Нитрование гетероциклических соединений охватывает настолько широкую область, что здесь будет дано только краткое обсуждение. Для конкретных примеров следует обращаться к монографиям [37, 38], посвященным химии гетероциклов, и к обзору по нитрованию гетероциклических азотсодержащих соединений [39]. Условий нитрования меняются от очень мягких в случае гетероциклов с низкой степенью ароматичности, например тиофена [40] или пиррола [39], до очень жестких в случае азотсодержащих гетероциклов с высокой степенью ароматичности и дезактивирующихся за счет образования солей. Например, пиридин в дымящей серной кислоте с нитратом калия при 300 °С дает около 20% 3-нитропиридина[41]. Несомненно, этот метод может быть улучшен. С другой стороны, N-окнсь пиридина легко нитруется и образуется N-окись 4-нитропирндина (пример 6.2). [c.483]

    Нами изучено также нитрование двуокисью азота пиридина, который, по литературным данным, нитруется с большим трудом. Так, например, Фридль [50] действовал на пиридин смесью 18% -ной дымящей серной кислоты с нитратом калия при 330°, пропуская одновременно через реакционную смесь сильную струю воздуха. В результате нитрования им получен, 8-нитропиридин (т. пл. 41°) с выходом 15% от теоретического. [c.370]


Смотреть страницы где упоминается термин Пиридин, нитрование: [c.464]    [c.382]    [c.382]    [c.391]    [c.81]    [c.45]    [c.370]   
Нитрование углеводородов и других органических соединений (1956) -- [ c.31 , c.45 , c.370 , c.376 , c.425 ]

Нитрование углеводородов и других органических соединений (1956) -- [ c.31 , c.45 , c.370 , c.376 , c.425 ]




ПОИСК





Смотрите так же термины и статьи:

Действие кислот и оснований. Реакции присоединения, электрофильного замещения, галогенирования, нитрования, сульфирования, ацилирования, взаимного превращения пятичленных гетероциклов Шестичленные гетероциклы с одним гетероатомом Пиридин

Нитрование окисей пиридинов и хинолино

Нитрование оксида пиридина



© 2025 chem21.info Реклама на сайте