Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофильная атака

    Аналогичная ситуация реализуется, по-видимому, также и в ферментативных реакциях. Взаимодействие с субстратом одной функциональной группы белка может быть усилено за счет участия в реакции какой-либо другой, рядом расположенной группы нуклеофильного или электрофильного характера. Так, например, при гидролизе пептидной связи на активном центре карбоксипептидазы А см. схему на стр. 19) нуклеофильная атака молекулой воды усилена за счет общеосновного катализа со стороны карбоксильной группы остатка 01и-270 (а возможно и под действием гидроксильной группы остатка Туг-248). Общекислотный катализ осуществляет, по-видимому, Туг-248. Кроме того, расщепление пептидной связи субстрата может быть существенно облегчено в результате электрофильной атаки атомом 2п. [c.65]


    Нафтолы и нафтиламины вступают в реакции азосочетания, в которых они подвергаются электрофильной атаке диазокатиона, а наф-тиламин, подобно анилину, может быть превращен в диазокатион. [c.276]

    Реакция начинается с электрофильной атаки протоном л-элект-ронного облака одной из двойных связей. В результате образуется неустойчивый л-комплекс (I), который переходит затем в сопряженный карбониевый ион (II). л-Электроны соседней двойной связи в результате взаимодействия с положительным зарядом перемещаются в центр молекулы. Одновременно с этим положительный заряд переходит на крайний углеродный атом (III). Эта структура может перестраиваться в обратном направлении —в сторону (И). Структуры (II) и (III) называются граничными и применяются как способ изображения мезомерного карбкатиона. Атомы углерода С и С несущие положительный заряд, подвергаются затем нуклеофильной атаке со стороны аниона хлора с образованием продуктов 1,2- и 1,4-присоединения  [c.79]

    Электрофильная атака К в положения 2,4 менее выгодна, чем в положение [c.321]

    Механизм первой стадии сульфирования ароматических углеводородов олеумом и их реакций со свободным 50з состоит в электрофильной атаке углеводорода молекулой 50з через промежуточные я- и ст-комилексы  [c.330]

    Реакция проводится в растворителе ири 30—50°С, когда дальнейшее присоединение карбоновой кислоты с раскрытием а-оксидного цикла, еще не является существенным. Считается, что надкислота реагирует в циклической форме с внутримолекулярной водородной связью, когда на пероксидном атоме кислорода появляется частичный положительный заряд, обеспечивающий возможность электрофильной атаки двойной связи  [c.439]

    Эта реакция обратима и быстро достигает состояния равновесия. Константа равновесия К имеет значение порядка 10 . Значительно более медленным актом, определяющим скорость взаимодействия изобутилена с формальдегидом, является электрофильная атака ненасыщенной углеводородной связи  [c.369]

    Это предположение само по себе вполне законно, так как п-электроны связи N = в основании Шиффа смещены к атому азота, который в условиях реакции может протонироваться. Наличие полного положительного заряда на атоме азота должно оказать влияние на сопряженную со связью N = кратную углерод-углеродную связь в результате на атоме углерода концевой метиленовой группы появляется частичный положительный заряд, и он может электрофильно атаковать орго-положение бензольного кольца [см. формулу (115)]. [c.552]


    NOi + ,He —> ,H,NO-NO2 — электрофил, а СвНе — нуклеофил, поэтому данная реакция, с одной стороны, есть электрофильная атака нитроний-иона на молекулу бензола, а с другой — нуклеофильная атака бензола на атом N в нитроний-ионе. Однако в синтетической химии реагирующие вещества делят (условно) на агенты и субстраты. Например, при нитровании ароматического соединения это соединение рассматривается как субстрат, а нитрующая смесь азотной и серной кислот — как агент. В силу этого реакцию нитрования бензола рассматривают как реакцию электрофильного замещения. Таким образом, гетеролитические реакции, в которых участвуют два реагента, делят (условно) на нуклеофильные и электрофильные по типу атакующего агента в нуклеофильной [c.166]

    В полярных растворителях механизм может быть совершенно другим, включающим электрофильную атаку ионом Вг+. В протонирующих растворителях отрывающей частицей может служить протонированный радикал 8 [125] [c.78]

    Присоединение по двойной углерод — углеро ной связи протекает как асинхронный процесс, на первой стадии которого происходит электрофильная атака я-электронного облака молекулы. Это подтверждается бромированием этиленов в присутствии растворителей или растворов солей. Присоединение бромной воды к этилену приводит к образованию не только дибромида, но и бромгидрина, что свидетельствует в пользу ступенчатого механизма [c.251]

    МОЖНО Предложить еще по одной. Стабильность этих двух ионов возрастает не только в результате появления еще одной канонической формы, а также потому, что эта форма устойчивее других и вносит больший вклад в резонансный гибрид. Каждый атом (кроме, конечно, атомов кислорода) в этих формах (В и Г) обладает полным октетом электронов, тогда как во всех остальных формах один атом углерода несет на себе секстет электронов. Такую форму нельзя написать для мета-изомера. Включение этой формы в гибрид понижает энергию не только в соответствии с правилом 6 (т. 1, разд. 2.4), но также и в результате делокализации положительного заряда по большей площади — в делокализации участвует и группа Z. Тогда можно ожидать, что группы, которые имеют пару электронов, осуществляющих взаимодействие с кольцом, в отсутствие эффектов поля будут не только направлять замещение в орто- и /гара-положения, но и активировать эти положения в отношении электрофильной атаки. [c.316]

    И все же действительно тройные связи, как правило, более подвержены нуклеофильным и менее — электрофильным атакам, чем двойные связи, несмотря на более высокую электронную плотность в алкинах. Одно из объяснений этого заключается в том, что электроны тройной связи удерживаются более прочно из-за меньшего расстояния между атомами углерода поэтому атакующему электрофилу труднее оторвать пару электронов от такой связи. Данные спектроскопии в дальней УФ-области свидетельствуют в пользу этого вывода [71]. Другое возможное объяснение базируется на доступности свободной орбитали алкина. Показано, что я "-орбиталь изогнутых алкинов (таких, как циклооктин) имеет более низкую энергию, чем л -орбиталь алкенов, и предполагается [72], что линейные алкины могут принимать изогнутые конфигурации в переходных состояниях при взаимодействии с электрофилами. В тех случаях, когда электрофильное присоединение включает образова- [c.150]

    Алкильные производные ароматических углеводородов получаются обычно при действии галогеналкилов на бензол в присутствии катализатора А1С1з. Эта реакция имеет много общего с реакциями галогенирования. Роль катализатора при этом заключается в создании положительно заряженного катиона, который электрофильно атакует бензольное кольцо  [c.297]

    Природа начальной стадии карбоний-ионной полимеризации является особенно важной, поскольку, как и в свободно радикальной реакции полимеризации она является ключом, при помощи кotopoгo можно обеспечить воспроизводимость и контроль реакции. Легкая полимеризация соответствующих олефинов в присутствии катализаторов Фриделя—Крафтса привела в более ранних работах к предположению, что инициирование цепи может происходить в результате электрофильной атаки таких реагентов па л-электроны двойной связи [123], нанример  [c.157]

    Реакции нитрования, галоидирования и сульфирования ароматических углеводородов аналогичны в том отношении, что углеродные атомы ядра подвергаются электрофильной атаке при сульфировании, по-видимому, ионом — SO3H+. Однако реакция сульфирования отличается от двух других реакций двумя особенностями, а именно она является обратимой реакцией и температура реакции оказывает большое влияние на положение входящей в ядро группы. Эти особенности усложняют изучение механизма сульфирования и затрудняют возможность сделать общие выводы. [c.527]


    Это позволило предположить, что при щелочном расщеплении и при гидрогенолизе углеводов (полиолов) катионы гидроокиси осуществляют электрофильную атаку молекулы по трео-гидрокси-лам С образованием промежуточного пятичленного хелатного циклического комшлекса. Гидроксильные ионы участвуют в нуклеофильной атаке молекулы, поэтому в щелочной среде реакция деструкции углеродной цепи может протекать по механизму, объединяющему нуклеофильный и электрофильный механизмы ( пуш-пулл )  [c.89]

    Сказанное позволяет сформулировать гипотезу механизма действия катионов следующим образом. Гомогенный сокатализатор гидрогеиолиза образует комплекс с углеводами или полиолами. Чем более устойчив такой комплекс, тем более активным при гидрогенолизе является соответствующий катион. Электрофильная атака катиона облегчается хелатным эффектом и поэтому направляется главным образом на грео-гидроксильные группировки. [c.93]

    Получение. В зависимости от условий проведения реакции галогенирования могут получаться галогенопроизводные с галогеном в ядре или в боковой цепи. Если реакцию проводить в присутствии катализаторов (РеС1з, А1С1з, 5ЬС1з), то образуются производные с галогеном в ароматическом ядре. Роль катализаторов заключается в поляризации молекулы галогена с образованием положительно заряженного центра, который электрофильно атакует бензольное ядро  [c.289]

    Механизм расщепления аминокислот до спиртов пе вполне выяснсп. Прежние представления, согласно которым сначала происходит дегидрирование аминокислоты в иминокислоту, не могут считаться правильными, так как было показано, что валин, меченный тритием в положениях а и 3, превращается в альдегид (СНз)2СНСНО без потери трития. Поэтому было высказано предположение (Спенсер, Кроухолл и Смит), что сначала происходит электрофильная атака окислителя (условно [c.355]

    Представления о я-связи и р -гибрндизации. Цис-транс-изомерия. п-Комплексы при присоединении к кратной связи. Понятие об энергетике реакции, переходное состояние, энергетическая кривая, энергия активации. Гомо- гетеролитический разрыв связи. Индуктивный эффект. Объяснение правила Марковннкова, пероксид-ный Э(]х[)ект Хараша. Нуклеофильность и электрофильность атакующей частицы. Спектры (ПМР, ИК, УФ) олефинов. [c.249]

    По этим причинам ВНз, образовавшийся в растворе тетра-гидрофурана, электрофильно атакует атомом бора крайний атом углерода в алкене, на котором имеется избыточная электронная плотность. В качестве интермедиата образуется биполярный продукт (23), в котором положительный заряд возникает на вторичном, а не на первичном атоме углерода, что, как уже обсуждалось ранее, энергетически более выгодно. Реакция завершается миграцией гидрид-иона от несущего полный отрн- [c.24]

    В чтом случае электрофильная атака направляется предпочтительно в указанные стрелками положения. [c.347]

    При этом промежуточно должны образоваться днкатион и молекула анилина, а новая углерод-углеродная связь возникает в результате электрофильной атаки дикатиона пара-положения в молекуле анилина. Недостатком такого объяснения механизма бензидиновой перегруппировки является отсутствие веских аргументов в пользу гетеролитического разрыва связи N—N в симметрично построенном протонированном гидразобензоле. [c.424]

    При растворении в АПЭ-растворителе расщепление полярной связи происходит в результате электрофильной атаки на более отрицательный центр X, причем гетеролизу способствует образование комплексных или сольватированных анионов, например [c.450]

    Электрофильная атака с участием Н+ протекает через образование неклассического карбониевого иона  [c.468]

    Благодаря образованию на атоме алюминия отрицательного заряда, связь С1-С1 поляризуется и атом галогена становится способным к электрофильной атаке на я-систему беазола с образованием бснзо иевого иона. [c.221]

    Заместители можно разделить на две группы. К первой относятся заместители, которые направляют или, еще говорят, ориентируют электрофильную атаку в орто- и ид/>а-положения. Они называются орто-пара-ориентянтлмя. Вторую группу составляют л етв-ориентанты, т. е. заместители, ориентирующие замещение в мета-попожснпе. [c.224]

    В силу электроноакцепторного влияния атомов азота пиримидин практически не вступает в реакцию электрофильного замещения. Однако при наличии в ядре двух электроиодонорных заместителей он ведет себя как бензол и электрофильная атака направлена в положение 5, т. е. в а-положение по отношению к азометиновым группам. [c.323]

    Обращает на себя внимание наличие значительных положительных зарядов на всех углеродных атомах молекулы углевода. Этот вывод делает понятной легкую доступность углеродных атомов углеводов нуклео4)ильной атаке егр можно поставить в связь с общей неустойчивостью углеродного скелета углеводов, склонных к деструкциям и изомеризациям в щелочной среде. Для циклической формы (пентапи ранозы) установлено более высокое значение электронной плотности на Сх по сравнению с нециклической альдегидной структурой из этого естественно вытекает ослабление альдегидных функций полуацетального углерода, что вполне согласуется с опытом. Кислый характер полуацетального гидроксила связан с тем, что отрицательный заряд на полуацетальном кислороде снижен по сравнению с-ч)бычным спиртовым, что ослабляет его связи с протоном. Наконец, в молекуле пиранозы электронная плотность на эндоциклическом кислороде понижена, что снижает его активность при электрофильной атаке молекулы. Таким образом, при раскрытии пиранозного цикла в кислой среде более вероятной представляется атака протона по глико-зидному, а не циклическому кислороду. [c.61]

    Если нуклеофильные механизмы богаче представлены в алифатическом ряду, то электро( зильные реакции более характерны для ароматических соединений. Это имеет достаточно серьезные причины ароматические системы легко подают я-электроны, создавая центры с повышенной электронной плотностью, которые и подвергаются атаке со стороны электроноакцепторных групп Н+, Р, Вг" , С1+, N0 ", ЫОа, 30зН+, а также ионов металлов Ы ", Ыа."", XHg и др. Местом электрофильной атаки обычно становится атом, имеющий избыток электронов. В органических соединениях такую роль нередко играет карбанион. Предполагается, что его гибридизация приближается к типу 5/ , т. е. тригональна. Исследование кристаллической структуры трицианометида аммония показало, что карбанион имеет почти плоскую тригональную конфигурацию с валентными углами 120°, причем центральный углеродный атом лишь на 0,13 А выходит из плоскости, в которой лежат три атома азота  [c.224]

    Особенно широко представлены и хорошо изучены реакции электрофильного замещения в ароматическом ряду. К ним относятся такие процессы, как нитрование, сульфирование, галоидирование, алкилирование, ацилирование, хлорметилирование, азосочетание, металлирование, дезал-килнрование водородом, амидирование гидроксиламином. Экспериментально установлено, что в этих случаях заместитель осуществляет действительно электрофильную атаку. [c.233]

    Так, хлористый бром С1 — Вг поляризован так, что на более электроотрицательном хлоре сосредоточена избыточная плотность электронов. Если галоидирование бензола представляет собой нуклеофильный процесс, то в результате реакции должен возникнуть хлорбензол. Поскольку галоидирование при помощи С1Вг приводит к бромзамещенным, следует предположить электрофильную атаку кольца положительно заряженным бромом. Показано также, что в смеси азотной и серной кислот нитрующим агентом является катион нитрония N02- [c.234]

    Скорость замещения и направление реакции зависят как от характера электрофильного реагента, так и от влияния на процесс заместителей, существующих в ароматической системе. Индукционная подача электронов от заместителя + 1 всегда активирует и ускоряет реакцию арена по сравнению с незамещенным бензолом, поскольку возрастает плотность электронов в ароматическом цикле. Отрицатель-нъ1Й индукционный эффект —1 оказывает обратное действие, оттягивая электроны от бензольного кольца и затрудняя тем самым электрофильную атаку. [c.238]

    В соответствии с этим предположением электрофильная атака происходит по иара-положеиию (или по орто-положению, что приводит к тому же продукту), а Л1ега-ориентация аминогруппы— это косвенный результат. Такая схема носит название механизма а-замещения [135]. [c.340]

    При присоединении несимметричных реагентов к несимметричным субстратам возникает вопрос с какой стороны двойной или тройной связи присоединится тот или иной фрагмент реагента В случае электрофильной атаки ответ на этот воирос дает правило Марковникова положительно заряженная часть реагента присоединяется к тому атому двойной или тройной связи, с которым связано больше атомов водорода [79]. Для такой региоселективности был предложен ряд объяснений, паиболее вероятное из которых заключается в том, что Y+ присоединяется так, чтобы получился наиболее стабильный карбокатион. Так, для алкильной группы вторичные карбокатионы более стабильны, чем первичные  [c.152]

    Присоединение к циклопропанам может идти по любому из четырех обсуждавшихся в настояш,ей главе механизмов, но наиболее важен механизм с электрофильной атакой [106]. Реакции присоединения к замеш,енным циклопропанам обычно подчиняются правилу Марковникова, хотя известны и исключения часто эти реакции вообще характеризуются низкой региоселективностью. Применение правила Марковникова к таким субстратам можно продемонстрировать на примере взаимодействия 1,1,2-триметилциклопропапа с НХ [107]. Согласно правилу Марковникова, электрофил (в данном случае Н+) должен атаковать атом углерода, соединенный с большим числом атомов водорода, а нуклеофил должен присоединяться к атому углерода, который лучше стабилизирует положительный заряд (в данном случае скорее к третичному атому углерода, чем [c.158]

    Простые эфиры енолов более чувствительны к электрофильной атаке, чем тройные связи, гюэтому присоединение спиртов к этим эфирам может также катализироваться кислотами. Одно из часто использующихся применений этой реакции — защита ОН-групп первичных и вторичных спиртов и фенолов с помощью дигидропирана 31 [149]. Образующийся при таком взаи- [c.167]

    С помощью этой реакции в производные циклопропана можно превратить олефины всех типов (хотя в случае стерически затрудненных субстратов могут возникнуть осложнения) [788]. Даже тетрацианоэтилен, который очень малочувствителен к электрофильной атаке, реагируя с карбенами, дает производные циклопропана [789]. Реакции сопряженных диенов идут как 1,2-присоединение [790]  [c.266]

    На стадии 2 электрофилом является протон. Почти во всех реакциях, рассматриваемых в данной главе, электрофильная атака происходит либо атомом водорода, либо атомом углерода. Отметим, что стадия 1 точно соответствует стадии 1 тетраэдрического механизма нуклеофильного замещения у карбонильного атома углерода (т. 2, разд. 10.9), поэтому можно ожидать, что замещение будет конкурировать с присоединением. Однако такое встречается редко. Если А и В — это Н, К или Аг, то субстрат представляет собой альдегид или кетон, а они почти никогда не вступают в реакции замещения, так как Н.КиАг — очень плохие уходящие группы. В случае кислот и их производных (Б = ОН, ОК, ЫНг и т. д.) присоединение происходит редко, так как перечисленные группы представляют собой хорошие уходящие группы. Таким образом, в зависимости от природы [c.322]

    Присоединение олефинов к формальдегиду в присутствии кислотных [537] катализаторов называется реакцией Принса [538]. Возможно образование трех продуктов, а какой из них будет доминирующим, зависит от природы олефина и условий реакции. При образовании в качестве продукта 1,3-диолов или производных диоксана [539] реакция включает присоединение к связи как С = С, так и С = 0. Обе реакции являются электрофильной атакой на двойные связи. Вначале кислота протони-рует группу С = 0, а получаюишйся карбокатион атакует связь С = С  [c.412]

    Движущей силой этого процесса (диенон-фенольной перегруппировки) является, конечно, образование ароматической системы [128]. Можно отметить, что ионы 49 и 50 являются аре-нониевыми ионами (т. 2, разд. 11.1), такими же, которые образуются при электрофильной атаке фенолов [129]. Иногда в реакции фенола с электрофилом наблюдается как бы обратная перегруппировка фенол-диеноновая перегруппировка), хотя и без истинной миграции [130], например  [c.140]


Смотреть страницы где упоминается термин Электрофильная атака: [c.301]    [c.153]    [c.126]    [c.224]    [c.225]    [c.332]    [c.148]    [c.155]   
Металлоорганическая химия переходных металлов Том 1 (1989) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Электрофильность



© 2024 chem21.info Реклама на сайте