Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластические массы методы переработки

    Пластическими массами (пластмассами) обычно называют неметаллические материалы, перерабатываемые в изделия методами пластической деформации (прессование, экструзия, литье под давлением и т.д.), обладающие пластическими свойствами в условиях переработки и не обладающие этими свойствами в условиях эксплуатации. Таким образом, при обычных температурах пластмассы представляют собой твердые, упругие тела. [c.377]


    Первая стадия рассматривается в главе VI, вторая, в зависимости от направления использования,—в главах УИ, УП1 и IX. На стадии переработки полимеров получают изделия заданной конфигурации, при этом полимер приобретает определенную молекулярную структуру. Такие процессы осуществляются при формовании резиновых изделий путем прессования, каландрования, литья под давлением с последующей или одновременной вулканизацией (стр. 519 сл.), изготовления изделий из пластических масс методом литья, прессования и др. (стр. 531), при отливке пленок из раствора полимера, при изготовлении химических волокон (формование, вытяжка, стр. 443). [c.376]

    Принцип переработки пластических масс методом литья под давлением состоит, как известно, в том, что материал при нагревании в стальном цилиндре, который закрыт поршнем, доводится до возможно более жидкого состояния. После этого давлением поршня полиамид выдавливается из узкого сопла в стальную форму. Благодаря низкой температуре формы поступающая масса очень быстро застывает, так что готовая деталь может быть быстро вынута из формы. Поэтому идеальными продуктами для литья под давлением являются такие пластические массы, которые при нагревании образуют очень подвижные расплавы, не разлагающиеся и не изменяющиеся при продолжительном пребывании в цилиндре. [c.209]

    В данном учебном пособии рассматриваются основные свойства пластических масс, методы производства пластмасс, конструкции основных машин и аппаратов и их работа. Представлены также типовые кинематические схемы машин, аппаратов и их приводов. Большое внимание уделено вопросу переработки пластмасс в изделия. [c.3]

    Промышленность синтетических полимеров и пластических масс характеризуется большим разнообразием технологических процессов, определяемых природой исходных веществ — мономеров, методами их превращения в полимеры и требованиями к полимерам. Эти процессы непрерывно совершенствуются, осваиваются новые производства с прогрессивной технологией и современными методами управления. Быстрыми темпами развивается также промышленность переработки высокомолекулярных соединений в пластмассы, волокна, пленки и другие материалы. [c.4]

    В книге описаны процессы переработки пластических масс методом литья под давлением. Приведены анализ известных конструкций литьевых машин, метод расчета их параметров, а также расчеты основных узлов и отдельных деталей литьевых машин. Дана классификация литьевых машин и их основных узлов. [c.2]


    Формование волокна из размягченного сополимера осуществляется на машинах, аналогичных по конструкции и принципу работы экструдерам, применяемым в промышленности пластических масс для переработки термопластичных материалов и изготовления лент, труб, стержней и тому подобных изделий,. Сущность этого метода заключается в выдавливании материала, переходящего при повышенной температуре в пластическое состояние, через профилированное отверстие — мундштук или отверстие фильеры при давлении, достигающем 150—250 кгс/сл"., [c.227]

    На углях Кузнецкого бассейна проводились исследования формования пластической массы при переработке методом непрерывного коксования двух слабоспекающихся углей (см. табл. 2). [c.170]

    При переработке пластических масс методом литья под давлением плунжерные питьевые машины снабжаются специальными решетками. Одна из ф м этих решеток (сферическая) дала положительные результаты. Шнековые конструкции инжекционных цилин- дров наиболее пригодны для этих целей. [c.44]

    Методы получения пластических масс и их переработка зависят в первую очередь от отношения полимеров к нагреванию, т. е. являются ли они термопластичными или термореактивными, а затем от вида наполнителей, пластификаторов, красителей, стабилизаторов, антистатиков и других добавок. [c.4]

    Состав, методы переработки и области применения пластических масс [c.217]

    В книге изложены методы механической, физико-химической и биологической очистки сточных вод химических производств от растворенных и нераство-ренных органических и неорганических примесей. Описаны методы извлечения ценных вешеств из сточных вод. Рассмотрена технология очистки сточных вод ряда производств основной химической промышленности, промышленности основного органического синтеза, термической переработки топлив, производств синтетических смол и пластических масс. Значительное внимание уделено вопросам повторного использования сточных вод и создания систем без сброса сточных вод в водоемы. [c.335]

    Катализ играет огромную роль в промышленности органического синтеза. Процессы получения высокомолекулярных соединений—синтетических каучуков, волокон и пластических масс а также. большинства исходных мономеров для этих процессов являются каталитическими. Важнейшие химические соединения, имеющие промышленное значение,—кислоты, спирты, альдегиды и другие—получаются каталитическими методами. Наиболее эффективные способы переработки нефти также основываются на каталитических процессах. [c.146]

    Как известно, техническая целлюлоза, полученная различными методами из одревесневших растительных тканей, широко используется для получения простых и сложных эфиров, применяемых при получении искусственных волокон, пленок, пластических масс, покрытий, эмульгаторов и т. д. Такая целлюлоза, как было показано выше, практически всегда содержит примесь полисахаридов гемицеллюлоз, обычно снижающих качество получаемых изделий. Поэтому технические целлюлозы, используемые для химической переработки, подвергаются облагораживанию с целью снижения содержания в них гемицеллюлоз. Но, поскольку удаление гемицеллюлоз связано со значительным снижением выхода целлюлозы и повышением ее стоимости, вопрос о их минимальном остаточном количестве решается в каждом отдельном случае. Вопрос о требованиях к содержанию гемицеллюлоз в целлюлозе для различных видов химической переработки был рассмотрен выше. Здесь мы отметим только имеющиеся сведения о поведении гемицеллюлоз в тех или иных процессах при химической переработке целлюлозы. [c.394]

    Для развития народного хозяйства требуется рост производства разнообразных материалов, необходимых в машиностроении, строительстве, быту и т. д. Исходными веществами являются синтетические элементоорганические высокомолекулярные соединения, используемые в производстве пластических масс, электроизолирующих, лакокрасочных, смазочных и строительных материалов. Сейчас трудно найти отрасль народного хозяйства, в которой не применялись бы эти соединения, причем производство элементоорганических олигомеров и полимеров все время увеличивается. Они сочетают ценные технические качества с удобными и высокопроизводительными методами переработки в материалы и изделия самой различной формы и габаритов, и это обеспечивает элементоорганическим олигомерам и полимерам большое будущее. [c.15]

    В промышленности пластических масс подобный метод широко применяется для получения готовых изделий и известен под названием экструзия. По этой причине червячные машины для переработки термопластичных материалов называют экструдерами. В резиновом производстве червячные машины называют также шприц-машинами, шнековыми машинами, червячными прессами. [c.173]

    Переработка пластических масс может производиться самыми различными методами. Формование изделий основано на Пластичности этих материалов при повышении температуры. Причем пластичность термореактивных пластмасс с течением времени нагревания убывает. Таким образом, основными факторами, влияющими на процесс формования, являются температура, время и давление, применение которых не только ускоряет процесс формования, уплотняя разогретый материал, но и позволяет снизить температуру прессования. [c.584]


    Совокупность описанных методов исследования казеина может дать возможность отличить лишь очень хороший казеин от плохого, но не дает возможности различать казеин промежуточных качеств. Наш стандарт для казеина допускает изготовление заведомо плохого казеина, но с различной степенью как пластичности, так и чистоты окраски. До сих пор не уставлено методов химического анализа, позволяющих судить о степени пригодности различных казеинов для галалитовой промышленности. Этот вопрос требует исследовательской работы, дабы работники промышленности могли наперед знать, с каким сырьем они имеют дело и каких результатов надо ждать после его переработки в пластическую массу. [c.106]

    Применение. Фенолоальдегидные смолы находят большое применение для приготовления широкого ассортимента пластических масс, лаков и синтетических клеев. Наиболее ценное техническое качество их — способность переходить при нагревании в неплавкое и нерастворимое состояние. На этом свойстве основаны главные методы переработки их в изделия. Обычно вначале смолы в виде растворов, водных эмульсий или расплава (новолачные смолы с линейной структурой) смешивают с различными наполнителями. В качестве наполнителей в зависимости от технических требований к готовым изделиям используют древесную муку, ткань, бумагу, асбест или другие материалы. Пропитанный смоляным раствором наполнитель превращают в изделия методом горячего прессования в формах или другими подобными методами. Готовые изделия содержат смолу в неплавком и нерастворимом состоянии (сетчатая структура).  [c.204]

    Третья часть книги, составляющая около 40% ее объема, отведена технологии высокомолекулярных соединений. В нее включена новая глава, в которой рассмотрены методы синтеза и свойства важнейших полимеров. Последующие процессы их переработки в изделия и полимерные материалы излагаются в порядке постепенного возрастания сложности этих технологических процессов (вначале описаны химические волокна, затем каучуки и резина и, наконец, пластические массы). [c.8]

    За последние 10—15 лет реология полимеров сложилась в самостоятельное научное направление, в различных своих аспектах смыкающееся с молекулярной физикой, механикой сплошных сред и технологией переработки и применения высокомолекулярных соединений. В настоящее время реологические исследования полимеров приобрели огромный размах, охватив широкий круг объектов, причем общность методологии позволяет активно использовать методы, разработанные в реологии полимеров, для изучения механических свойств самых разнообразных материалов биологических жидкостей, смазок, неорганических веществ типа глин, бетона и стекла. Практический выход реологических исследований связан с созданием новых технологических процессов переработки пластических масс, резиновых смесей и волокон, расчетом и оптимизацией существующих производств, прогнозированием и оценкой эксплуатационных характеристик изделий в самых передовых областях современной техники. [c.9]

    Уточнены и обновлены показатели важнейших физико-химических свойств полимеров и пластических масс на их основе, выпускаемых в Советском Союзе. Дополнительно к этим показателям приведены показатели свойств, предусмотренные новыми действуюш,ими ГОСТ и ТУ (по состоянию на первую половину 1974 г.). Даны краткие сведения о способах получения полимеров, методах их переработки, областях применения. Во все главы введены небольшие разделы [c.3]

    При подготовке второго издания справочника пришлось вновь столкнуться с некоторыми трудностями, связанными с тем, что основные физико-химические свойства полимеров определялись на образцах, полученных в различных условиях. Этим объясняется плохая сопоставимость данных о физико-химических свойствах, взятых из разных источников. Кроме того, вследствие различия в методах изготовления образцов и методах испытаний затруднено сравнение образцов отечественных и зарубежных материалов. Поскольку свойства различных пластических масс в значительной мере определяются условиями их переработки в изделия, отсюда понятен и тот разнобой в сведениях об их характеристиках, встречающихся в литературе. При практическом использовании приведенных в справочнике данных все эти соображения необходимо учитывать, [c.3]

    Пластических масс переработка — превращение полимерных материалов в изделия методами формования. Основные способы пере- [c.10]

    К числу таких соединений относятся исходные продукты синтеза искусственного каучука, искусственных волокон, пластических масс, синтетические моющие средства, ядохимикаты, стимуляторы роста растений, витамины, красители, нитросоединения, растворители, синтетические спирты, кислоты, кетоны, галоидопроизводные, новые лекарственные препараты и многие другие вещества промышленности органического синтеза. Промышленное производство указанных продуктов в больших масштабах стало возможным благодаря химической переработке угля и нефти и внедрению новых катализаторов в химические процессы. В нефтеперерабатывающей промышленности все методы синтеза высокооктановых компонентов моторных [c.3]

    В промышленности пластических масс применяют пневмоформование как метод переработки пластмасс и изделий и обдувку изделий воздухом. Некоторые виды сырья транспортируются со склада в цехи по трубопроводам с помощью сжатого воздуха. В промышленности химических волокон кроме воздушных компрессоров общего назначения применяют холодильные компрессорные установки для снабжения цехов холодом, а также компрессоры для подачи азота на технологические нужды. [c.55]

    Усовершенствование конструкций перерабатывающего оборудова ния применительно к процессам крашения. При краиишании пластических масс методом сухого крашения смесь материала с красяшим веществом после смесителя подается на переработку непосредственно в изделия. Для этих целей обычно используют экструзионное и литьевое оборудование. [c.44]

    На базе газов нефтепереработки, природных и иопутных газов в СССР строятся и работают крупные заводы по производству различных продуктов органического синтеза. Так, в большом масштабе производятся фенол и ацетон ио методу, разработанному нроф. П. Г. Сергеевым, создана промышленность синтетического спнрта, организовано производство стирола и полистирола, питрила акриловой кислоты, поливинилхлорида и других химических продуктов, являющ,ихся в свою очередь сырьем для промышленности синтетического каучука, пластических масс, искусственного волокна и других отраслей промышленности. Однако уровень развития нефтехимической промышленности СССР все еш,е отстает от потребностей народного хозяйства нашей страны. Углеводороды природных газов используются для химической переработки все еш,е в недостаточном объеме. [c.4]

    Только немногие отрасли промышленности перерабатыват высокомолекулярные природные материалы без применения каких-либо химико-технологических процессов, методами чисто механической технологии. Такова, например, деревообделочная промышленность. Гораздо многочисленнее отрасли промышленности, где при переработке природных высокомолекулярных материалов сочетаются процессы меха-чической и химической технологии. При этом, например, в производстве хлопчатобумажных, шерстяных и льняных текстильных волокон, натурального шелка, в меховой и кожевенной промышленности преобладают процессы механической технологии, однако для выпуска готового изделия необходимо проведение и таких важных химико-технологических процессов, как крашение волокон, тканей, меха, окраска и дубление кожи и т. д. В целлюлозно-бумажной промышленности, частично в резиновой (на основе натурального каучука), в производстве эфироцеллюлозных пластических масс, кинопленки, искусственного волокна, наоборот, преобладают химико-технологические процессы обработки. [c.18]

    В зависимости от выбранного метода переработки пластические массы предварительно подготовляют в виде гранул, таблеток или заготовок, в форме листов или плит различных размеров и толщины, в виде труб и стержней различного диаметра. Переработка пластической массы в изделия производится методом литья под давлением (литьевые массы), реже—прессованием, штамповкой, вакуум- или пневмовытяжкой листовых ма- 4 териалов, в некоторых случаях— механической обработкой (резанием, сверлением, фрезерованием листов, плит, труб, стержней). Механическую обработку целесообразно применять только при изготовлении небольшого числа изделий данного типа. [c.531]

    Подобный же метод был в свое время успешно применен в практике нефтяной технологии. Таким образом, труд Д. К. Коллерова расширяет и уточняет расчетный метод определения важнейших физико-химических и теплотехнических свойств на две новые отрасли промышленности сланцеперерабатывающую и коксохимическую. Однако значение работы Д. К. Коллерова этим еще не исчерпывается. Вероятно многие из выведенных им закономерностей окажутся интересными и нужными и для других органических производств, где приходится иметь дело с переработкой и использованием сложных по составу жидких смесей. К числу таких производств относятся многие производства органического синтеза, пластических масс и синтетического каучука. [c.4]

    По сравнению с газами термического и каталитического крекинга в газах пиролиза во много раз выше содержание как этилена, так и олефинов состава Сз—С4, а пиролиз1ная смола характеризуется высоким содержанием ароматических углеводо-родав (до 50%) в завиаимости от исходного сырья и режима ее переработки. В связи с этим в ряде научно-исследовательских организаций разрабатываются методы комплексной переработки смол пиролиза с получением гомологов бензола, нафталина, имеющих важное значение как сырье для производства разл1ич-ных смол, пластических масс, синтетических волокон и др. [c.133]

    Сополимеры выпускают в виде гранул, порошка, дисперсий. Вязкость расплава соиолимеров 10 —10 н-сек/м (10 —10 пз) при температуре 300—330 °С их перерабатывают обычными для термоиластов методами (см. Переработка пластических масс). Скорость экструзии сополимеров значительно выше, чем сополимеров тетрафторэтилена с гексафторпропиленом [средняя скорость сдвига 1000—3000 сек без признаков дробления (без эластичной турбулентности) расплава нри темп-ре мундштука 300—355°С]. [c.397]

    Достаточно упо.мянуть об огромном расширении промышленной химической переработки топлива (в первую очередь нефти и нефтепродуктов), где особенно большое применение нашли каталитические методы. Широко используются синтетические методы производства углеводородов для специальных видов авиа- и автотоплива. Осуществлены новые процессы получения синтетических каучуков, синтетического волокна, пластических масс и органических стекол, органических инсектофунгицидов, лекарственных веществ. Достигнуты крупные успехи в области изучения строения и синтеза сложнейших природных веществ — алкалоидов, витаминов, гормонов, антибиотиков и пр. [c.11]

    Лит. Канавец И. Ф., Отверждение термореактивных пресспорошков и метод расчета минимальной вкщержки при прессовании изделий из фенопластов. М., 1957 Соколов А. Д., Пластич. массы, М 6, 35 (1969) Завгородний В. К., Механизация и автоматизация переработки пластических масс, М., 1970 Механика полимеров, JV 5, 820 (1971) Брагинский В. А., Технология прессования точных деталей из термореактивных пластмасс. Л., 1971 Салазкин К. А., Прессование, прессы, ч. 1, М., 1975. В. А. Брагитккий. [c.87]


Библиография для Пластические массы методы переработки: [c.233]   
Смотреть страницы где упоминается термин Пластические массы методы переработки: [c.227]    [c.246]    [c.468]    [c.569]    [c.584]    [c.417]    [c.291]    [c.396]    [c.289]    [c.396]   
Краткий справочник по химии (1965) -- [ c.340 , c.360 ]




ПОИСК





Смотрите так же термины и статьи:

Пластическая

Пластические массы

методы переработки



© 2025 chem21.info Реклама на сайте