Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орбитали ориентация

    Тип гибридизации Орбитали, участвующие в гибридизации Число гибридных орбиталей Ориентация [c.52]

    Пространственное расположение связей между лигандами и центральным атомом или ионом зависит от свойств, используемых им атомных орбиталей. Ориентация связывающих орбиталей была рассмотрена в разд. 5.2. Представляется интересным остановиться на стереохимии некоторых комплексных ионов, образуемых переходными металлами. [c.524]


    Магнитное квантовое число. Пространственная ориентация орбиталей. Для характеристики пространственного расположения орбиталей (облаков) применяется третье квантовое число /П/, называемое магнитным. Оно имеет следующие значения О, 1, 2, 3, ..., / и определяет значение проекции орбитального момента количества движения на выделенное направление (например, на ось г)  [c.18]

    При составлении схем распределения электронов в атоме пользуются следующими обозначениями черта — орбиталь, стрелка — электрон, направление стрелки — ориентация его спина. [c.23]

    Форму рассматриваемых орбиталей и их ориентацию по оси 2 см. рис. 23, 27 и 28.) [c.199]

    Орбитали заполняются электронами в порядке возрастания энергии, На 5-орбитали может находиться максимально два электрона. На трех р-орбиталях в совокупности может размещаться до 6 электронов, на пяти -орбиталях-до 10 электронов, а на семи /-орбиталях-до 14 электронов. Прежде чем начать процесс заполнения орбиталей, необходимо выяснить последовательность возрастания их энергетических уровней. У многоэлектронных атомов в отсутствие внешних электрических и магнитных полей энергия электронов зависит от квантовых чисел п и I (эти квантовые числа определяют размеры и форму орбиталей), но не зависит от квантового числа т (определяющего ориентацию орбиталей). [c.387]

    Рис 13-3 Образование трех эквивалентных гибридных хр -орбиталей атома в результате составления линейных комбинаций из его 1 -, 2р,- и 2ру-орбиталей. Гибридные р -орбита-ли имеют плоскую тригональную ориентацию в пространстве. [c.554]

    Примером вещества с атомной решеткой является алмаз. Его кристаллическая решетка состоит из атомов углерода, каждый из которых связан ковалентными связями с четырьмя соседними атомами, размещающимися вокруг него в вершинах правильной трехгранной пирамиды — тетраэдра. Поскольку ковалентная связь образуется в результате перекрывания орбиталей соединяющихся атомов, которые имеют вполне определенную форму и ориентацию в пространстве, то ковалентная связь является строго направленной (в отличие от ионной связи). Этим, а также высокой прочностью ковалентной связи объясняется тот факт, что кристаллы, образованные атомами, имеют высокую твердость и совершенно непластичны, так как любая деформация вызывает разрушение ковалентной связи (например, у алмаза). Учитывая, что любые изменения, связанные с разрушением ковалентной связи в кристаллах (плавление, испарение), совершаются с большой затратой энергии, можно ожидать, что у таких кристаллов температуры плавления и кипения высоки, а летучесть очень мала (например, у алмаза температура плавления составляет 3500 °С, а температура кипения —4200 °С). [c.42]


    Согласно закону Стокса, длина волны флуоресценции всегда больше длины волны возбуждающего света. Однако имеются примеры антистоксовой флуоресценции, когда длина волны флуоресценции меньше длины волны возбуждающего света. Возбуждение молекулы соответствует переходу электрона с основного уровня на возбужденный. Поскольку молекулярные орбитали молекул с четным числом электронов заполнены парами электронов, имеющими противоположно направленные спины, то при переходе электрона на верхнюю орбиталь его спин может оказаться ориентированным или в том же, или в противоположном направлении, что и у оставшегося на нижней орбитали электрона. Если ориентация спина сохранится, то возбужденное состояние будет иметь тот же результирующий спиновый момент, что и основное состояние. При этом мультиплетность сохраняется. Мультиплетность состояния равна п+, где п — число неспаренных электронов. Если же ориентация спина изменится на противоположную, то изменится и мультиплетность. Мультиплетность основного состояния большинства молекул с четным числом электронов равна 1, т. е. это синглетные состояния. При сохранении мультиплетности возбужденное состояние тоже будет -синглетным. Если же возбуждаемый электрон меняет направление спина, то возбужденное состояние будет три-плетным. Таким образом, одному основному состоянию соответствует набор разных возбужденных состояний — синглетных и триплетных (рис. 28). [c.53]

    При /-=0 I F(O) р= l/я/ о (Го — радиус первой боровской орбиты).. Молекулярные орбитали могут быть представлены в виде линейной, комбинации атомных орбиталей. Для неспаренного электрона, находящегося на молекулярной орбитали, величина контактного взаимодействия определяется вкладом атомных s-орбиталей. Контактное взаимодействие изотропно, т. е. не зависит от ориентации пара-магнитны.к частиц по отношению к внешнему магнитному полю. Константа a сверхтонкого взаимодействия в единицах напряженности магнитного поля может быть выражена в виде [c.243]

    Следовательно, орбитальное управление объясняет высокие скорости некоторых -внутримолекулярных реакций, используя понятия благоприятной ориентации орбиталей, подвергающихся регибридизации в переходном состоянии. Однако не очень понятно, каким образом влияние этого фактора можно отделить от влияния других структурных факторов. В настоящее время существует больше аргументов против того, чтобы приписывать орбитальному управлению решающее значение. Например, эффективная концентрация соседних групп принимается равной 55 моль/л это соответствует концентрации чистой воды. Считают, что при этом существенно недооценивается вклад поступательной энтропии (согласно предположению Дженкса) в эффективную концентрацию [70]. Хотя некоторое необходимое перекрывание орбиталей должно происходить в переходном состоянии, оно соответствует изменению ориентации не больше чем на 10°. Такое искажение сио-собно вызвать угловое напряжение (не больше 11 кДж/моль, т. е. 2,7 ккал/моль) связи между углеродными атомами [58]. [c.214]

    Магнитное квантовое число mi определяет пространственную ориентацию орбиталей. Оно изменяется в пределах от —I до [c.13]

Рис. 1. Форма и ориентация электронных орбиталей а — 5-орбитали б — р-орбнтали в — -орбитали Рис. 1. Форма и <a href="/info/1252117">ориентация электронных</a> орбиталей а — 5-орбитали б — р-орбнтали в — -орбитали
    Второе квантовое число — орбитальное (I) — описывает форму (симметрию) орбиталей и характеризует величину орбитального импульса движущегося электрона. Оно может принимать целочисленные значения от О до п—1. Обычно для обозначения-соответствующих орбиталей применяют строчные буквы латинского алфавита 5 (1 = 0), р (1= ), й (1=2), / ( =3). Форма и ориентация 5-, р- и -электронных орбиталей приведены на рис. 1. Электроны с различными Орбитальными квантовыми числами (5-электроны, р-электроны и т.д.) отличаются различной энергией их энергия тем больше, чем больше значение I. 5-Элект-роны образуют 5-подуровень, о-электроны — /р-подуровень и т. д. [c.11]

    Третье квантовое число — магнитное (/п ) — определяет пространственную ориентацию и число орбиталей на соответствующем подуровне. Оно принимает целочисленные значения от — I до f/. Для 5-подуровня возможна одна орбиталь (т1—0), для р-подуровня — три 2р-орбитали 2рх, 2ру, 2рг (т = —I. 0,- -1), для -подуровня — пять орбиталей (т/=—2, —I, О, +1, +2) и т. д.  [c.11]

    Магнитное квантовое число. Пространственная ориентация орбиталей. Для характеристики пространственного расположения орбиталей (облаков) применяется третье квантовое число т/, называемое магнитным. Оно имеет следующие значения т, = 0. 1, 2. 3,. ... 1 [c.16]


Рис. 203. Ориентация р -орбиталей атомов углерода макромолекулы С оо Рис. 203. Ориентация р -орбиталей атомов углерода макромолекулы С оо
    Электроотрицательность по Полингу, хотя она и зависит от многих молекулярных параметров (гибридизации орбиталей, заряда атомов и т. д.), хорошо помогает при ориентации в обширной области химии, занимающейся изучением химической связи. Поэтому полезно познакомиться с этим понятием как можно раньше. [c.105]

    Чем же тогда отличаются эти орбитали Из рисунка видно, что различие связано с различной ориентацией в пространстве. В отсутствии внещнего поля энергия электрона, находящегося на любой из трех этих орбиталей, одинакова. [c.31]

    Для -орбиталей (/ = 2) возможно уже пять значений магнитного квантового числа и соответственно пять различных ориентаций -электронных облаков в пространстве (рис. 2.22). [c.59]

    Пусть положительный центральный ион, имеющий во внешней -оболочке один электрон, окружен шестью отрицательными лигандами (октаэдрическая конфигурация). При зтом энергия -орбиталей увеличится вследствие действия отрицательных зарядов лигандов по сравнению с состоянием изолированного центрального иона. Известно, что все пять -орбиталей изолированного атома в энергетическом отношении равноценны (d-уровень пятикратно вырожден). Если бы лиганды создавали сферически симметричное поле и действовали на все АО центрального иона совершенно одинаково, то энергия этих АО изменится на одинаковую величину Ео и -уровень остался пятикратно вырожденным. Однако поле шести точечных лигандов на различные -орбитали действует неодинаково. Наибольшее действие (и, как можно доказать, одинаковое) оно оказывает на х2-у2- и .г2-орбитали, вытянутые в направлении лигандов (рис. 1.12). Остальные орбитали ( , , йуг, см. рис. 1.3) различаются лишь ориентацией относительно осей координат. Действие на них атомов лигандов совершенно одинаково и вследствие большей удаленности от этих атомов менее значительно. [c.43]

    Система рефракции связей кажется наилучшей из всех трех для определения рефракций органических молекул. Наиболее важное ее преимущество перед другими связано с тем, что она облегчает прямой подход к концепции анизотропии поляризации, причем этот термин означает, что поляризуемость орбиталей, ориентация которых совпадает с направлением поля, отличается от их поляризуемости при иной ориентации. Само по себе не кажется очевидным, что поляризуемость почти сферических атомов должна изменяться при изменении ориентации молекулы в поле более очевидным является то, что поляризуемость связей должна изменяться в соответствии с тем, колинеарны они полю или перпендикулярны ему (ср. с магнитной анизотропией, стр. 138), и удалось добиться некоторых положительных результатов при анализе рефракций связей, представляя их как совокупность продольных, поперечных и вертикальных параметров. Одна из главных трудностей, с которыми приходится сталкиваться,— это решение вопроса о вкладе в общую поляризуемость, вносимом несвязанными нарами электронов гетероатомов таких групп, как С— X, С — О и С —N. [c.160]

Рис. 167. Ориентация р-орбиталей атомов углерода макромолекулы С200. Рис. 167. Ориентация р-орбиталей атомов углерода макромолекулы С200.
    Таким образом, метод ОВЭП приводит к выводу об экваториальной ориентации неподеленной пары электронов в 8р4, так как она отвечает меньшему числу сильных отталкиваний под углом 90°. По аналогии с этим случаем можно понять, что вторая и третья неподеленные пары (например, в молекулах С1Рз и 1з соответственно) должны также располагаться на экваториальных орбиталях центрального атома, что позволяет объяснить предсказания формы молекул, сделанные на рис. 11-3. [c.496]

    Второй разновидностью вандерваальсовых межмолекулярных сил является притяжение, обусловленное такой синхронизацией движения электронов на заполненных орбиталях взаимодействующих атомов, при которой они по возможности избегают друг друга. Например, как показано на рис. 14-12, электроны на орбиталях атомов, принадлежащих взаимодействующим молекулам, могут синхронизировать свое движение таким образом, что в результате возникает притяжение между мгновенными диполями и индуцированными ими диполями. Если в некоторый момент времени атом, изображенный на рис. 14-12 слева, имеет большую электронную плотность слева (как и показано на рисунке), то этот атом превращается в крошечный диполь с отрицательно заряженным левым концом и положительно заряженным правым концом. Положительно заряженный конец притягивает к себе электроны атома, изображенного на рис. 14-12 справа, и превращает его в диполь с аналогичной ориентацией. В результате между двумя атомами возникает притяжение, потому что положительно заряженный конец левого атома и отрицательно заряженный конец правого атома сближены. Аналогичные флюктуации электронной плотности правого атома индуцируют мгновенный диполь, или асимметрию электронной плотности, на левом атоме. Флюктуации электронных плотностей происходят непрерывно, а их результирующим эффектом является очень слабое, но важное по своему значению притяжение между [c.611]

    О вероятностях. Даже если преподаватель решил не останавливаться на подробном обсуждении волнового уравнения Шрёдингера (как бывает, если решено не делать упор на молекулярные орбитали), можно ввести представление о квантовых числах как индексах атомных орбиталей и продемонстрировать взаимосвязь этих чисел с размерами, формой и ориентацией орбиталей. Если эти соотношения удается сделать понятными применительно к атому водорода, их распространение на многоэлектронные атомы обычно не вызывает затруднений у студентов. [c.574]

    Интересно применить эти уравнения к тензору анизотропного СТВ для ядра С, который зависит главным образом от плотности неспаренного электрона на р-орбитали атома. Рассмотрим знаки Т,, и для этой системы. Три ориентации р-орбитали в молекуле относительно направления приложенного поля показаны на рис. 9.20. Штриховыми ЛИНИЯМ указаны областп, где функция j os G - 1 равна нулю. Это позволяет учесть знаки для различных областей линий поля, создаваемого ядерным моментом. Поэтому, глядя на рис. 9.20, можно решить, каков знак [уравнение (9.34)]. Например, как следует из рис. 9.20,Л. если Pj-орбиталь направлена вдоль поля, почти полное усреднение дипольного взаимодействия ядерного момента по р,-орбитали происходит в положительной части конуса. Поэтому можно ожидать, что представляет собой большую положительную величину. Для ориентации [c.39]

    Из равенства (I, 29) видно, что 5-орбиталн не зависят от углов т и ф и поэтому сферически симметричны (рис. 4). Пространственная ориеитация угловых волновых функций для р-орбиталей зависит от углов тЭ и ф и определяется максимумом соответствующих трнгогю-метрических функций синуса или косинуса. Как видно из табл. 1, Ур имеет максимальное значение при = 0, т. е. направление, задаваемое этим значением угла, есть направление преимущественной ориентации этой орбитали. Максимальное значение грр соответ- [c.20]

    Комбинация типа одной х-, трех р- и одной -орбиталей приводит к хр -гибри-дизации. Это соответствует пространственной ориентации пяти хр -гибридных орбиталей к вершинам тригональной бипирамиды. В случае хр -гибридизацин шесть. s p d -гибpидныx орбиталей ориентируются к вершинам октаэдра. [c.67]

    В сущности, согласно гипотезе Кошланда, повышение скорости реакции образования лактонов во внутримолекулярной реакции вызвано тем, что нути сближения реагирующих групп ограничены некоторыми вполне определенными направлениями в противоположность статистической ориентации, наблюдаемой при бимолекулярной реакции. Кошланд считает, что орбитальное управление способно объяснить, почему ферменты столь эффективны. Вероятно, ферменты выстраивают связывающие орбитали реагирующих молекул и каталитических групп с точностью, невозможной при обычном бимолекулярном столкновении в растворе. Фермент не только сближает субстраты, (эффект сближения Брюса) существует еще фактор ориентации, связанный с формой электронных орбиталей реагпиюнноспособных атомов. Это-то и должно вызывать уникалы, ю каталитическую активность ферментов. Удивительная каталитическая активность ферментов, следовательно, вытекает не только из их способности приблихоть реагирующие атомы, но также и направлять орби- [c.212]

    Именно этой проблеме посвящен настоящий раздел, где за основу принята сравнительно новая концепция органической химии, стереоэлектронного контроля, предложенная Делоншамом [114, 115]. Эта концепция учитывает свойства правильной ориентации орбиталей при расщеплении тетраэдрического интермедиата в гидролитических реакциях и совершенно отличается от гипотезы орбитального управления Кошланда, в которой правильное расположение орбиталей способствует образованию тетраэдрического интермедиата. Обсудим с этих позиций расщепление тетраэдрического интермедиата прн гидролизе эфиров и амидов. [c.243]

    Расщепление каждого из этих трех конформеров приведет к образованию соответствующего диоксолеиий-иона, согласно только что упомянутому правилу соответствия ориентации орбиталей. Теперь (при рассмотрении относительной стабильности каждого из этих диоксолений-ионов для конформеров а, д и е) очевидно, что структура д обладает ыс-конформацией, а а н е — транс. Известно, что транс-диоксолений-ион устойчивее, чем цис-изомер, по аналогии с более стабильными г/эанс-эфирами. Следовательно, расщепление конформера д — более высокоэнергетический процесс, и эту структуру также можно исключить (см. рис. 4.6)  [c.246]

    Наибольший интерес из этих структурных разновидностей пред-ставлшот 1,3-диены. Это связано, прежде всего, с их практической важностью (которая, в свою очередь, определяется особенностью очень любопытной структуры). Итак, строение 1,3-бутадиена СН2=СН-СН=СН.,. Попарное перекрывание р-орбиталей углеродных атомов С ...С и Сз...С должно приводить к образованию между ними двух локализованных я-связей. Однако при вьшолнении соответствующих условий (параллельная ориентация р-орбиталей, "близкое расстояние иежду С ...С атомами) возможно также взаимодействие между р-орбиталями атомов. [c.104]

    Две оставщиеся рг-орбитали вместе образуют так называемую молекулярную орбиталь л-связи. Поскольку рг-орбитали направлены перпендикулярно к я-связи, которую они образуют, их перекрытие меньше, чем в случае орбиталей ст-связи. Точно так же области максимального перекрытия лежат вне плоскости (ху) между атомами С, выше или ниже последней. Благодаря подобной ориентации рг-орбиталей взаимодействие между сопряженными л-связями настолько велико, что, по существу, происходит делокализация л-электронов. С учетом конфигурации л-связи легко понять, что поворот группы вокруг мульти-плетных связей запрещен [1с]. [c.100]

    Кроме рассмотренных возможны и другие типы гибридизации валентных орбиталей и отвечающие им типы пространственной конфигурации молекул. Комбинация одной 5-, трех р- и одной -орбиталей приводит к 5р -гибридизации. о соответствует пространственной ориентации пяти зр й-гибридных орбиталей к вершинам тригональной бипирамиды (рис. 29, г). В случае зр й -гибридизации шесть 5рз 2 гибридных орбиталей ориентируются к вершинам октаэдра (рис. 26,й). Ориентация семи орбиталей квершинам пентагональ-ной б и пирамиды (рис. 2б,е) соответствует (или зрЫ [)-гиб-ридизации валентных орбиталей центрального атома молекулы (комплекса). [c.66]

    Существуют и другие объяснения столь высоких эффектов ускорения внутри-ыолеку.тярных (ферментативных) процессов среди них наиболее популярно представление Кошланда мл. с сотр. [36, 37] об орбитальном управлении (orbital sleering) внутримолекулярных реакций. Эта концепция, однако, подвергалась критике за необоснованное введение новой терминологии [33, 34], а также в связи с тем, что авторы ее, принимая в расчет весьма тонкие эффекты ориентации взаимодействующих орбиталей, не дооценивают тот очевидный вклад, который вносит в ускорение внутримолекулярных реакций замораживание поступательных и вращательных степеней свободы реагирующих групп в целом [21]. [c.53]

    Названия -АО и их симметрия находятся в полном соответствии друг другу. Орбиталь с индексом ху ориентирована вдоль диагонали между осями х и у, знак ее в точке пространства с координатами (г, у, г) положителен, если произведение х у положительно, и наоборот. Анапогично определяется ориентация и значность у -АО. Орбиталь д 2 у2 ориентирована вдоль осей х и у. Она положительна в точках пространства, располагающихся вдоль оси х (как и функция х , имеющаяся в подстрочном индексе орбитали) и отрицательна вдоль оси у (как —J/ ). Функция всегда положительна в точках пространства, располагающихся вдоль оси г (подстрочный индекс в таких точках по.ложителен). [c.59]


Смотреть страницы где упоминается термин Орбитали ориентация: [c.71]    [c.83]    [c.371]    [c.374]    [c.571]    [c.224]    [c.29]    [c.214]    [c.338]    [c.59]    [c.18]    [c.79]   
Физические методы в неорганической химии (1967) -- [ c.91 ]




ПОИСК







© 2024 chem21.info Реклама на сайте