Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспортные РНК структура цепи

    В глобулярных белках одно или большее число полипептидных цепей свернуты в плотную компактную структуру сферической или глобулярной формы. К белкам данного типа относятся почти все ферменты, транспортные белки крови, антитела, а также пищевые белки. [c.425]

    Основной задачей при исследовании фотосинтеза на современном этапе являются расшифровка природы всех участников электронно-транспортной цепи от H2O до O2, установление строгой последовательности их расположения и характера донорно-акцепторных, ион-дипольных, координационных и других взаимодействий этих молекул в составе фотосинтетического аппарата, определение природы их связи с молекулами хлорофилла, белков и липидов мембран хлореллы. Все эти вопросы относятся к структуре фотосинтетического аппарата, которая непосредственно определяет его функции. [c.743]


    Протонный насос в отличие от других АТРаз синтезирует АТР благодаря наличию градиента протонов. Данная система выделена из митохондриальной мембраны, частично охарактеризована биохимическими методами и путем анализа реконструированных систем. Методом электронной микроскопии высокого разрешения определена трехмерная структура светозависимого протонного насоса галофильных бактерий. Все эти данные подтверждают ряд выдвинутых ранее гипотез о том, что такие транспортные системы состоят из а-спиральных полипептидных цепей, пронизывающих мембрану. [c.185]

    Соединения, имеющие хиноидную структуру, играют важную роль в электрон-транспортных цепях биологических объектов и являются простейшими моделями ряда важнейших макромолекул. Интересно, что и сами углеродные материалы могут рассматриваться как конденсированные хиноидные структуры. [c.160]

    Как уже отмечалось, функцией РНК является реализация матричного синтеза белка. Выше мы рассмотрели принципы кодирования белковой цепи. Разберем теперь механизм реализации этого принципа. Информация о, структуре белка содержится в матричной РНК, к-рая является копией одной из цепей ДНК (с заменой дезоксирибозы на рибозу и тимина на урацил, что не отражается на спаривании оснований). Матричную РНК можно себе представить разбитой на триплеты (кодоны). Нужная последовательность аминокислот на матрице набирается с помощью транспортной рибонуклеиновой к-ты. [c.195]

    В работе [34] колебательные химические реакции рассматриваются по аналогии с явл ениями обратной связи (положительной, отрицательной и антагонистической) в электрических цепях. Кинетическое самовоздействие химических реакций физико-химических транспортных процессов при некоторых условиях может приводить к колебаниям, бистабильности, распространению реакции и к другим связанным во время протекания процессов явлениям. По мнению автора [34], все эти явления (включая и диссипативные структуры) могут быть объяснены и кинетически классифицированы на основе представлений об обратной связи. [c.54]

    Большая работа была проделана для установления структуры молекул РНК. Поскольку для этих молекул принцип спаривания оснований не выполняется строго, для большинства образцов РНК рибосом нельзя получить высококристаллические волокна. Рентгенографические исследования показали, что транспортная РНК имеет структуру, похожую на структуру А-формы ДНК. Двойную спираль образует одна цепь, сложенная вдвое. Большинство данных о структуре различных образцов РНК, получено косвенным образом, при изучении спектров поглощения, светорассеяния, вязкости и ультрацентрифугирования растворов.  [c.258]


    Транспортная РНК выполняет две раздельные функции во-первых, она узнает специфический активирующий фермент и поэтому может акцептировать именно соответствующую активированную аминокислоту [3] и, во-вторых, вместе с т-РНК она участвует в реализации кода, обеспечивая переносимой аминокислоте присоединение к растущей полипептидной цепи как раз в том месте, где необходимо. Но-видимому, вторичная структура s-PHK не участвует в распознавании активирующего фермента, потому что при нагревании, нарушающем обычно вторичную структуру, способность акцептировать аминокислоты не ослабевает. [c.268]

    Транспортные РНК, содержащие различные аминокислоты, подтягиваются к рибосомам. Рибосомы, в свою очередь, вступают в контакт с информационной РНК (и-РНК) и, продвигаясь вдоль линейной структуры последней, как бы считывают заложенную в ней информацию и, руководствуясь ею, включают аминокислоты в определенной последовательности в полипептидную цепь. [c.346]

    РНК исследовались методом рентгеноструктурного анализа с целью установления того, имеют ли их полинуклеотидные цепи спиралевидную форму, аналогичную ДНК, но до настоящего времени определенных выводов сделать не удалось из-за отсутствия однородных образцов кристаллической РНК. Однако дрожжевую транспортную РНК удалось очистить и получить в кристаллическом состоянии. Получены хорошие рентгенограммы этого вещества, и они оказались чрезвычайно сходными с теми, которые дает ДНК таким образом, эти две структуры должны быть близкими. В соответствии с этим вероятное строение дрожжевой транспортной РНК должно быть таким, при котором каждая полинуклеотидная цепочка сложена вдвое по всей длине и скручена таким образом, что образует двойную спираль. Две половины цепи РНК соответствуют, следовательно, комплементарным цепям ДНК. Не вызывает сомнения, что спиральная структура поддерживается за счет водородных связей между парами оснований аденин — урацил и гуанин — цитозин (партнеры, образующие такую пару, находятся в разных половинах цепи). В месте перегиба цепи имеется несколько неспаренных оснований, и небольшой хвост неспаренных оснований имеется на одном из концов цепи. В этом состоит главное отличие спиральной конфигурации дрожжевой транспортной РНК от спиральной конфигурации ДНК. Дифракционная картина, полученная при рентгеноструктурном исследовании РНК из других источников, сходна с дифракционной картиной, полученной при исследовании дрожжевой транспортной РНК следовательно, спиральная конфигурация присуща, по-видимому, многим формам РНК. [c.142]

    Рассматривая далее роль РНК в синтезе белка, полезно вернуться к описанной выше структуре дрожжевой транспортной РНК. Ее наиболее интересной особенностью является наличие неспаренных оснований в месте перегиба полинуклеотидной цепи. Для того чтобы было возможно образование спиральной структуры, в этом месте должны разместиться минимум три нуклеотида, у которых основания не связаны водородными связями. Эти три (или большее число) нуклеотида могут, весьма вероятно, играть решающую роль при включении той или иной конкретной аминокислоты в аминокислотную последовательность синтезируемого белка. Можно, например, представить себе, что код аминокислотной последовательности передается от информационной РНК к транспортной РНК путем образования водородных связей между указанными неспаренными основаниями и соответствующими основаниями информационной РНК. Если остальная часть молекулы транспортной РНК способна соединиться с определенной аминокислотой, предварительно активированной ферментом, то в результате данная аминокислота будет перенесена к определенному месту РНК-матрицы. [c.144]

    Свойства рибонуклеиновых кислот будут рассмотрены на примере двух классов этих соединений, для которых в настоящее время в ряде случаев известна первичная структура, а именно транспортных РНК и 5S рибосомальных РНК. Свойства более высокомолекулярных рибонуклеиновых кислот во многом аналогичны, однако их вторичная структура в настоящее время не может обсуждаться на уровне конкретных моделей, поскольку неизвестна последовательность оснований в их полинуклеотидной цепи (обзор — см. ).  [c.285]

    Освобождение завершенной полипептидной цепи с рибосомы, которое происходит, когда рибосома достигает конца молекулы информационной РНК, возможно после гидролиза связи между карбоксилом С-концевой аминокислоты и ее транспортной РНК. Характерную трехмерную структуру, зависящую от аминокислотной последовательности, полипептидная цепь приобретает либо в процессе синтеза, либо после освобождения с рибосомы. Должно произойти также образование поперечных дисульфидных связей и другие структурные [c.201]

    Таким образом, данная вторичная структура РНК определяется последовательностью нуклеотидов, которая в свою очередь обусловливает третичную структуру петель, состоящих из неспаренных оснований, и открытых участков цепи, которые по отнощению друг к другу удерживаются в каком-то фиксированном состоянии. Такие оголенные участки являются потенциальными точками , с помощью которых РНК может специфически взаимодействовать с другими нуклеиновыми кислотами (например, взаимодействие рибосомальной или информационной РНК с транспортными РНК), и в них заключены новые возможности для кодирования или переноса информации, которые не свойственны деструктурированным одноцепочечным тяжам или идеальным двойным спиралям. То, что устойчивость многих спиральных участков в этой модели находится на пределе при температуре клетки, позволяет отдельным участкам нуклеотидной последовательности мгновенно освобождаться при тепловых (или энергетических) флуктуациях, что может иметь особое биологическое значение [359]. [c.628]


    Представления о растворимой транспортной РНК и о ее комплементарном сочетании с матричной РНК носят еще весьма предварительный характер. Считают, что соответствующие транспортные РНК с разными аминокислотами занимают соответствующие места на матричной (информационной) молекуле РНК в результате аминокислоты располагаются в ряд в соответствующем порядке, образуя специфическую полипеп-тидную цепь белка. Так, образование пептидных связей, отличающееся высокой специфичностью и происходящее с большой скоростью, осуществляется под влиянием специфической информации, закодированной последовательностью расположения нуклеотидов в ДНК (и РНК). При помощи механизма попарного соединения оснований эта последовательность воспроизводится с образованием либо новых молекул ДНК для новых клеток, либо молекул матричной РНК, необходимых для синтеза белковых молекул, характерных для данного вида. При помощи белков, многие из которых являются ферментами, клетка синтезирует множество других молекул (в том числе пуринов, пиримидинов, аминокислот, углеводов, жиров, стеринов, пигментов и т. п.), часто необходимых для поддержания ее структуры и функции. [c.94]

    ЦИТОХРОМРЕДУКТАЗЫ — ферменты или ферментные системы класса оксидоредуктаз, катализирующие перенос электронов и (или) водорода от различных субстратов па цитохромы. Цптохромредук-тазы делятся на две группы 1) сложные системы ферментов, входящие в электроно-транспортные дыхательные цепи митохондрий животных тканей 2) растворимые ферменты, имеющие относптельно простые структуру и функции. [c.441]

    Термин Г. впервые предложил В. Иогансен в 1909 для обозначения дискретных наследств, факторов, открытых Г. Менделем в 1865. Значит, прогресс в изучении тонкой структуры и закономерностей функционирования Г. связан с развитием методов генетической инженерии, позволяющих выделять индивидуальные Г. и получать их в препаративных кол-вах. Разработка способов расшифровки первичной структуры РНК, а позднее и ДНК, а также познание осн. механизмов биосинтеза нуклеиновых к-т в клетке открыли возможность искусств, синтеза Г. В 1967 А. Корн-берг впервые осуществил ферментативный синтез биологически активной ДНК фага XI74, содержащей 5 Г. В том же году X. Корана завершил полный хим. синтез двухцепочечного полинуклеотида (в одной цепи 199 нуклеотидов), соответствующего бактериальному Г., к-рый кодирует тиро-зиновую транспортную РНК. Однако применение хим. методов для синтеза Г. эукариот затруднено, в частности из-за очень большого их размера. Для этих целей более перспективно совместное использование хим. и ферментативных методов. [c.517]

    Биологические мембраны представляют собой динамическую структуру, компоненты которой подвержены быстрому метаболизму. Благодаря этому липвдное окружение мембранных белков обладает способностью в соответствии с изменением условий функционирования изменять свои физикохимические свойства упаковку, микровязкость, латеральную подвижность компонентов в бислое и т.д. Подавляющее больщинство мембранных белков функционирует в составе олигомерных ансамблей, например в дыхательной цепи митохондрий. Транспортные белки также организуют ассоциаты в бислое димеры (Са -АТФаза), тетрамеры (Ка /К -АТФаза) или даже более высокоорганизованные надмолекулярные комплексы. [c.316]

    Вся информация о строении и функционировании любого живого организма содержится в закодированном ввде в его генетическом материале, основу которого составляет дезоксирибонуклеиновая кислота (ДНК). ДНК большинства организмов — это длинная двухцепочечная полимерная молекула. Последовательность мономерных единиц (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой. Принцип комплементарности обеспечивает идентичность новосинтезированных молекул ДНК, образующихся при их удвоении (репликации), исходным молекулам. Индивидуальными генетическими элементами со строго специфичной нуклеотидной последовательностью, кодирующими определенные продукты, являются гены. Одни из них кодируют белки, другие -только молекулы РНК. Информация, содержащаяся в генах, которые кодируют белки (структурных генах), расшифровывается в ходе двух последовательных процессов синтеза РНК (транскрипции) и синтеза белка (трансляции). Сначала на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК). Затем в ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы. Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы однозначно задает ее структуру и функции. [c.29]

    Главная функция гемоглобина (основного компонента эритроцитов) состоит в переносе кислорода из легких к тканям (рГанизма (транспортная функция). Его четвертичная структура редставляет собой образование из четырех полипептидах цепей (субъединиц), каждая из которых содержит гем см. 10.1). [c.373]

    В результате проведенных исследований было установлено, что в молекулах ДНК бактериофагов почти все последовательности нуклеотидов уникальны, т. е. встречаются один раз. В ДНК бактерий большинство генов также уникальны, но некоторые последовательности (кодирующие транспортные и рибосомные РНК) повторяются по нескольку раз. В геноме эукариотов уникальные последовательности нуклеотидов, т. е. структурные гены, несущие информацию о структуре специфических белков, составляют около 60% ДНК. Остальную часть ДНК составляют повторяющиеся последовательности. От 10 до 25% генома животных представлено умеренно повторяющимися последовательностями. Они являются структурными генами продуктов, необходимых ктетке в больших количествах. Это гены рибосомных и транспортных РНК, белков гистонов, отдельных цепей иммуноглобулинов. Они, как правило, расположены в ДНК в виде тандемных повторов, т. е. друг за другом, один ген отделяется от другого спейсером (от англ. spa er — промежуток). В группу умеренно повторяющихся последовательностей входят также участки ДНК, выполняющие регуляторные функции. Кроме того, в ДНК эукариот встречаются часто повторяющиеся последовательности (10 —10 раз). В основном это сате-литная ДНК, обнаруживаемая в центромерных областях хромосом, участвующая, по-видимому, в спаривании и расхождении хромосом. [c.178]

    Белки могут быть разбиты на два больших класса в соответствии с формой их молекул и некоторыми физическими свойствами глобулярные и фибриллярные белки (рис. 6-1). В глобулярных белках одна или большее число полипептидных цепей свернуты в плотную компактную структуру сферической, или глобулярной, формы. Обьлно глобулярные белки растворимы в водных системах и легко диффундируют одни из.этих белков выполняют функции, обусловленные их подвижностью, а другие функционируют как динамические системы. К глобулярным белкам относятся почти все ферменты, равно как и транспортные белки крови, антитела и пищевые белки. Фибриллярные белки представляют собой нерастворимые в воде длинные нитевидные молекулы, полипептидные цепи которых не имеют глобулярной формы, а вытянуты вдоль одной оси. Большинство фибриллярных белков выполняет структурные или защитные функции. Типичными фибриллярными белками являются а-кератин волос и шерсти, фиброин шелка и коллаген сухожилий. [c.140]

    Из этих соединений одним из важнейших компонентов электрон-транспортной цепи фотосинтеза является пластохинон А. По своей структуре он представляет собой замещенный бензохинон с двумя метильными группами и одной полиизопреноидной цепью,состоящей из девяти остатков изопрена. Структура других пластохи-нонов еще неизвестна. Возможны различия в длине цепей, в замещенных группах. [c.177]

    Рассмотренные примеры показывают, что при изучении процессов переноса в формованных цеолитах, так же как и в активных углях [12—15 ] и макропористых ионообменных смолах [3], необходимо учитывать бипористый характер структуры таких пористых тел. Роль сопротивления массопереносу в транспортных порах и кристаллах цеолитов будет зависеть от конкретной системы адсорбтив—цеолит и условий проведения опытов. Выше уже отмечалось влияние температуры опыта и размера гранул [4, 6] и кристаллов [17, 19] цеолитов. Величины коэффициентов диффузии углеводородов в кристаллах цеолитов в значительной степени зависят от длины углеродной цепи [6, 24], степенп ионного обмена цеолитов [25, 26] и многих других факторов. Кроме того, транспортные свойства и каталитическая активность цеолитов могут меняться в процессе проведения каталитических реакций (см., например, [27, 28]). [c.165]

    Применяемые для определения нуклеотидной последовательности РНК методы сводятся к контролируемому раацеплению нуклеиновых кислот различными ферментами и последующему разделению продуктов гидролиза. Комбинируя подходящие наборы ферментов и изучая олигонуклеотиды, полученные на различных стадиях гидролиза, можно определить нуклеотидный состав каждого из нвх, восстановить последовательность нуклеотидов в исходной цепи, что помогает окончательно расшифровать нуклеотидную последовательность всей РНК. Таким образом была установлена первичная структура многих транспортных РНК и некоторых 5S-PHK. [c.38]

    Информационная РЖ(мРНК, иРНК). ММ 25 000-1 ООО ООО Да. Состоит из 75—300 нуклеотидов, синтезируется в ядре из пре-мРНК. Кодовым элементом является триплет нуклеотидов (кодон), кодирующий аминокислоту. Во вторичной структуре — изогнутая цепь, в третичной — полинуклеотидная цепь связана (намотана) с транспортным белком информофером  [c.294]


Смотреть страницы где упоминается термин Транспортные РНК структура цепи: [c.7]    [c.133]    [c.53]    [c.55]    [c.7]    [c.353]    [c.118]    [c.89]    [c.184]    [c.404]    [c.128]    [c.125]    [c.437]    [c.48]    [c.609]    [c.624]    [c.625]    [c.68]    [c.57]    [c.95]    [c.171]    [c.334]   
Органическая химия нуклеиновых кислот (1970) -- [ c.27 , c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Транспортная РНК



© 2024 chem21.info Реклама на сайте