Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рибонуклеиновые кислоты высокомолекулярные

    Нуклеиновые кислоты — высокомолекулярные биополимеры, обнаруженные во всех типах клеток. Структурными единицами нуклеиновых кислот являются мононуклеотиды, состоящие из гетероциклических азотистых оснований (пуриновых и пиримидиновых), пентоз и фосфорной кислоты. Нуклеиновые кислоты делятся на два типа рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). РНК и ДНК различаются особенностями химического строения входящих в них пиримидиновых оснований и пентоз, локализацией в клетке и функциональным назначением в клеточном метаболизме. [c.161]


    РИБОНУКЛЕИНОВАЯ КИСЛОТА ВЫСОКОМОЛЕКУЛЯРНАЯ, [c.339]

    РНК (рибонуклеиновая кислота) — высокомолекулярное органическое соединение, присутствующее в клетках всех живых организмов и играющее первостепенную роль в воспроизведении генетической информации и синтезе белков полинуклеотид, состоящий из аде-нина, гуанина, цитозина, урацила (в ДНК заменен тимином) и сахара — рибозы (в ДНК — дезоксирибоза) у вирусов, в которых нет ДНК, служит непосредственным носителем генетической информации. [c.192]

    Рибонуклеиновая кислота высокомолекулярная [c.67]

    Свойства рибонуклеиновых кислот будут рассмотрены на примере двух классов этих соединений, для которых в настоящее время в ряде случаев известна первичная структура, а именно транспортных РНК и 5S рибосомальных РНК. Свойства более высокомолекулярных рибонуклеиновых кислот во многом аналогичны, однако их вторичная структура в настоящее время не может обсуждаться на уровне конкретных моделей, поскольку неизвестна последовательность оснований в их полинуклеотидной цепи (обзор — см. ).  [c.285]

    Сведения о конфигурационных свойствах макромолекул рибонуклеиновой кислоты (РНК) несколько менее определенны, чем о свойствах ДНК. Несмотря на большое сходство в химической структуре этих двух полинуклеотидов, гидродинамические свойства их растворов весьма различны. В случае РНК они соответствуют свойствам обычных гибких полиэлектролитов и сильно зависят от ионной силы, pH и температуры раствора. Сказанное относится как к высокомолекулярной (М = 5 - — 10 ) рибосомной РНК [252—256], так и к низкомолекулярной (М = 2 10 —3 10 ) растворимой (S-PHK) [257—260, 265—267]. В то же время наличие гипохромного эффекта (увеличение [c.701]

    Природные высокомолекулярные фосфорорганические соединения (рибонуклеиновые кислоты, фосфопротеиды, фосфорсодержащие ферменты и т. д.) и продукты фосфорилировании белков (эти вещества также имеют гетероцепное строение) относятся более к проблемам биохимии, чем к тематике данной книги, и мы этих вопросов касаться пе будем. [c.241]

    Уже давно было известно, что наряду с белками и полисахаридами в живых организмах содержатся высокомолекулярные вещества сложного строения — нуклеиновые кислоты. Все они имеют общий план строения их длинные цепи состоят из сахаров, связанных остатками фосфорной кислоты и содержащих органические вещества сложного строения. В зависимости от состава углевода различают дезоксирибонуклеиновую кислоту (ДНК) и рибонуклеиновую кислоту (РНК). ДНК содержит остатки дезоксирибозы. а РНК — рибозы  [c.178]


    Отвлекаясь от вирусов и фагов и возвращаясь к клеткам, напомним, что, как известно из цитологии, ДНК клетки сосредоточена в ядре (в хромосомах), а синтез белка идет в частицах — рибосомах, расположенных в цитоплазме, вне ядра, и содержащих только высокомолекулярную рибонуклеиновую кислоту. Исследование этого вопроса привело к выводу, что функции ДНК хромосом и РНК рибосом разделены так,что ДНК только хранитель информации, а рибосомы — синтетическая фабрика любого белка, строение которого задается ДНК. Как же передается эта информация от ДНК к рибосомам  [c.727]

    Нуклеиновые кислоты представляют собой высокомолекулярные линейные гетерополимеры с молекулярной массой от 250 до 1,2 10 kDa. Мономерными звеньями нуклеиновых кислот являются нуклеотиды — сложные органические молекулы, состоящие из азотистых оснований, остатка пентозы (рибозы или дезоксирибозы) и фосфорной кислоты. В зависимости от типа пентозы нуклеиновые кислоты подразделяются на дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). [c.171]

    Нуклеопротеиды состоят из простых белков и сложных высокомолекулярных соединений — нуклеиновых кислот. Различают два типа нуклеиновых кислот рибонуклеиновую и дезоксирибонуклеиновую. [c.42]

    По-видимому, рибонуклеиновые кислоты также состоят из длинных винтообразных цепей полинуклеотидов. При помощи бактериальных энзимов удалось синтезировать из нуклеотидов высокомолекулярные нуклеиновые кислоты, аналогичные рибонуклеиновой кислоте однако они оказались физиологически недеятельными (Охоа). [c.1049]

    Последние годы ознаменовались огромными успехами в изучении строения и функций важнейших биологически активных полимеров. Благодаря развитию новых методов разделения н очистки веществ (различные методы хроматографии, электрофореза, фракционирования с использованием молекулярных сит) и дальнейшему развитию методов рентгеноструктурного анализа и других физико-химических методов исследования органических соединений стало возможным определение строения сложнейших природных высокомолекулярных соединений. Изучено строение ряда белков (работы Фишера, Сейджера, Стейна и Мура). Установлен принцип строения нуклеиновых кислот (работы Левина, Тодда, Чаргаффа, Дотти, Уотсона, Крика, Белозерского) и экспериментально доказана их определяющая роль в синтезе белка и передаче наследственных признаков организма. Определена последовательность нуклеотидов для нескольких рибонуклеиновых кислот. Широкое развитие получили работы по изучению строения смешанных биополимеров, содержащих одновременно полисахаридную и белковую или липидную части и выполняющих очень ответственные функции в организме. [c.53]

    ДРУГИЕ БИОЛОГИЧЕСКИЕ ФОСФАТЫ. В биологических системах встречаются ие только макроэргические органические фосфаты. Скелеты дезоксирибонуклеиновых и рибонуклеиновых кислот (биологических полимеров) построены из чередующихся единиц углеводов (сахаров — соединений, содерииицих несколько гидроксильных групп) и остатков фосфорной кислоты. ДНК и РНК представляют собой ие что иное, как высокомолекулярные полимерные фосфатные эфиры, к скелету которых присоединены необычные амины. Часть такого скелета схематически показана ниже. [c.373]

    Нуклеиновые кислоты (от лат. nu leus — ядро) — высокомолекулярные органические соединения (молекулярная масса от сотен тысяч до миллионов), входят в состав сложных белков — нуклепротеидов и играют важную роль в процессах жизнедеятельности всех живых существ. Построены из большого количества мононуклеотидов, в состав которых входят фосфорная кислота, углеводы (рибоза или дезоксирибоза) и так называемые пуриновые и пиримидоновые основания. Различают дезоксирибонуклеиновую кислоту (ДНК) и рибонуклеиновую кислоту (РНК). ДНК сосредоточена преимущественно в ядрах всех клеток, в хромосомах РНК находится главным образом в цитоплазме. ДНК имеет большое значение в передаче наследственных свойств организмов, а РНК — в синтезе белков. [c.91]

    Более сложным оказался вопрос о строении полимерной цепи в рибонуклеиновых кислотах. РНК также являются высокомолекулярными соединениями, цепь которых состоит из рибонуклеозидов. Полимер при гидролизе распадается на соответствующие мономеры — рибонуклеоти-ды и, следовательно, РНК являются, подобно белкам и полисахаридам, продуктами поликонденсации мономеров, происходящей с отщеплением иппн Молекулярный вес РНК ниже молекулярного веса ДНК и колеблется в значительных пределах, достигая 1 000 000. РНК, будучи кислотами, при титровании показывают присутствие только первичного кислотного гидроксила. Так как известно, что пирофосфатная связь в них также отсутствует, то единственным возможным типом построения полимерной цепи является тип  [c.248]

    В клетках, составляющих живое вещество, содержатся особые высокомолекулярные нуклеиновые кислоты, связанные с белком, видимо, водородными связями. В течение последних десятилетий были изучены состав и строение нуклеиновых кислот и установлена их роль в биосинтезе белка. Ядра клеток содерл<ат дезоксирибонуклеиновую кислоту (ДНК), анализ продуктов гидролитического расщепления которой показал, что это слол ное вещество, содерлощее 1>-дезоксирибозу, фосфорную кислоту и смесь веществ гетероциклической структуры — производных пурина — аденина и гуанина и производных пирами-дина — тимина и цитозина. В плазме же клеток содержатся рибонуклеиновые кислоты (РНК), в составе которых обнарул<ены /З-рибоза, фосфорная кислота и гетероциклы — аденин, гуанин, цитозин и урацил (вместо тимина). [c.264]


    Дезоксирибонуклеаза I из поджелудочной железы [2, 52] расш епляет высокомолекулярные дезоксирибонуклеиновые кислоты до олигонуклеотидов и незначительно до мононуклеотидов, большая часть скелета полинуклеотида остается без изменения. Рибонуклеиновые кислоты при действии дезоксирибонуклеазы остаются без изменения. Кристаллическая дезоксирибонуклеаза I имеется в продаже.  [c.442]

    Гель-хроматографию особенно целесообразно применять в тех случаях, когда необходимо очень быстро отделить высокомолекулярные компоненты от низкомолекулярных. На специально подготовленной колонке (3X6 сл) с сефадексом 0-25 (грубым) Эрлан-деру [25] удалось всего за 2 мин полностью отделить рибонуклеазу от воды, содержащей тритий. Этот быстрый аналитический метод позволяет изучить кинетику обмена трития и на этом основании сделать выводы о степени спирализации растворенного белка. Несколько позднее аналогичная методика была успешно использована при исследовании вторичной структуры растворимых рибонуклеиновых кислот [26] и дезоксирибонуклеиновых кислот [27]. Конечно, нуклеиновые кислоты также могут быть модифицированы химическим путем, например действием диазотированной сульфаниловой кислоты [28]. Избыток реагента и побочные продукты реакции удаляют на сефадексе 0-50. [c.146]

    Важной составной частью протопласта являются нуклеиновые кислоты. Это высокомолекулярные полимерные органические соединения, в состав которых входят основания пуриновой (аденин, гуанин) и пиримидиновой группы (цитозии, урацил, тимин), сахар (рибоза или дезоксирибоза) и фосфорная кислота. К нуклеиновым кислотам относятся рибонуклеиновая кислота (РНК)> которая состоит из рибозы, оснований (аденина, гуанина, цитозина, урацила) и фосфорной кислоты (молекулярная масса 1—2 млн), и дезоксирибонуклеиновая кислота (ДНК), состоящая из дезоксирибо- [c.37]

    Основной характер протаминов и гистонов обусловлен присутствием в них большого количества диаминокислот аргинина, гистидина и лизина. Кислотные свойства нуклеиновых кислот зависят от диссоциации имеющихся в них остатков фосфорной кислоты. Нуклеиновые кислоты представляют собой высокомолекулярные соединения, построенные из большого количества мононуклеотидов. Нуклеиновые кислоты в зависимости от входящего в их состав углевода — рибо-зы или дезоксирибозы — носят соответствующие названия — рибонуклеиновая кислота, или РНК, и дезоксирибонуклеиновая кислота, или ДНК. Рибонуклеиновая кислота (РНК) содержится преимущественно в протоплазме клеток (в рибосомах, митохондриях, гиалоплазме) и в небольшом количестве находится в ядре и ядрышке. Дезоксирибонукледновая кислота (ДНК) содержится преимущественно в я  [c.45]

    НУКЛЕИНОВЫЕ КИСЛОТЫ. Высокомолекулярные органические соединения, входящие в состав сложных белков — нуклеопротеидов, играющих важную роль в моцессах жизнедеятельности всех живых существ. Построены из большого количества мононуклеотидов, в состав котш)ЫХ входят фосфорная кислота, углеводы (ри-боза или дезоксирибоза) и так называемые пуриновые и пиримидиновые основания. Различают дезоксирибонуклеиновую кислоту (ДНК) и рибонуклеиновую кислоту (РНК). РНК содержит углевод рибозу, а ДНК —частично восстановленную рибозу — дезоксирибозу. Они отличаются и составом оснований. В те и другие входят цитозин, аденин и гуанин, но в РНК содержится еще урацил, а в ДНК — тимин. ДНК сосредоточена преимущественно в ядрах всех клеток, в хромосомах, РНК находится главным образом в цитоплазме. ДНК имеет большое значение в передаче наследственных свойств организмов. РНК играет большую роль в синтезе белков. [c.203]

    Особые преимущества и.меет выделение рибонуклеиновых кислот из гомогенатов тканей млекопитающих, микроорганизмов и вирусов экстракцией фенолом и водой при комнатной температуре, так как при этом белки и дезоксирибонуклеиновые кислоты выпадают в осадок, активность рибонуклеазы подавляется и высокополимерные продукты могут быть получены с хорощими выходами [11—14]. Прямая экстракция дрожжей водным раствором фенола была применена для препаративного получения транспортных РНК [15]. В примененных условиях экстракции высокомолекулярный материал почти не экстрагировался. Комбинирование экстракции с быстрой очисткой РНК на анионитах ЭКТЕОЛА- [16] или ДЭАЭ-целлюлозе [17, 18] дает возможность получать относительно чистую транспортную нуклеиновую кислоту в больших количествах. [c.365]

    Хотя рибонуклеиновые кислоты, несомненно, состоят главным образом из нуклеотидов — производных аденина, гуанина, цитозина и урацила, полная расшифровка состава таких полимеров сопряжена с рядом трудностей. Возможное присутствие очень малых количеств ненуклеотидных компонентов до недавнего времени игнорировалось в значительной степени из-за удобства применения количественных расчетов по поглощению в ультрафиолетовой области. Кроме того, выбор между артефактом и подлинным компонентом не всегда легко сделать устойчивость или неустойчивость комбинации не является критерием ковалентного или нековалентного характера связывания с такими высокомолекулярными полиэлектролитами, как нуклеиновые кислоты. Теперь известно, что в некоторых рибонуклеиновых кислотах концевой аденозиновый остаток этерифицирован по 2 - или З -гидроксильной группе одной молекулой аминокислоты. (Аналогия с ацетильными производными аденозина позволяет предположить, что такие аминокислотные производные являются исключительно З -эфирами). Неоднократно отмечалось существование пептидных производных нуклеиновых кислот, и нельзя полностью пренебрегать возможностью присутствия в рибонуклеопротеидах некоторых относительно нестойких ковалентных связей между белком и нуклеиновой кислотой. Проблема минорных ненуклеотидных компонентов рибонуклеиновых кислот до некоторой степени дискуссионна и может быть разрешена соответствующим точным анализом нуклеиновой кислоты. [c.408]

    Все исследованные рибонуклеиновые кислоты из бактериальных, растительных и животных тканей содержат несколько минорных оснований. Однако количественное распределение их в рибонуклеиновых кислотах из различных источников неодинаково, и во фракциях нуклеиновых кислот из данного типа клеток (табл. 6-3) действительно имеются значительные вариации. Так, например, дрожжевые рибонуклеиновые кислоты, растворимые в молярном растворе хлористого натрия, содержат значительно больше псевдоуридина, чем те рибонуклеиновые кислоты, которые нерастворимы в таком растворе [261]. Точнее, этот компонент концентрируется в так называемой растворимой , или транспортной , рибонуклеиновой кислоте клетки (хотя он в значительных количествах присутствует, вероятно, и в высокомолекулярной рибосомальной РНК), и его содержание, по-видимому, прямо пропорционально способности рибонуклеиновой кислоты акцептировать аминокислоты наиболее активная (по включению лейцина) из выделенных до сих пор рибонуклеиновых кислот содержит около 5,6 мол.% превдоуридина [250, 264—267]. По сравнению с высокомолекулярной рибосомальной РНК растворимые цитоплазматические фракции клеточной рибонуклеиновой кислоты содержат метилированные основания также в значительно больших количествах [251, 268, 269]. В растворимых рибонуклеиновых кислотах из опухолевой ткани по сравнению с таковыми из клеток печени тоже было обнаружено заметное увеличение содержания метилированных пуринов (особенно 2-метил-амино-6-оксипурина) [269]. [c.411]

    С биологической точки зрения наиболее важными комплексами являются рибонуклеопротеиды. Мало известно о природе химической связи между нуклеиновой кислотой и белком, хотя во многих нуклеопротеидах, таких, как кристаллические вирусы растений, компоненты расположены определенным образом, когда нуклеиновая кислота окружена защитной белковой оболочкой. Рентгенографические исследования рибонуклеонротеидных частиц клеточного происхождения и полученных из них рибонуклеиновых кислот позволяет предположить, что конформация рибонуклеиновой части комплекса определяется белковой матрицей [280]. Обратимая диссоциация высокомолекулярных рибонуклеонротеидных субъединиц происходит легко [281] образование связей обусловлено, по-видимому, действием ряда сил. Последние включают кулонов-ское притяжение противоположно заряженных ионов, притяжение диполей и водородные связи. Убедительное доказательство наличия иных связей, кроме электростатических, было получено путем электрофоретического изучения рибонуклеопротеида, рибонуклеиновой кислоты и белка и изучения влияния обработки мочевиной на электрофоретическое поведение рибонуклеопротеида — прием, обычно используемый для ослабления водородных связей [282]. Соотношение рибонуклеиновой кислоты и белка в выделенных рибонуклеопротеидах значительно варьирует в случае наиболее строго [c.413]

    Окончательное установление первичной структуры дезоксинуклеиновых кислот связано с рядом проблем, еще труднее разрешимых, чем в случае рибонуклеиновых кислот, и достижений в этой области пока еще мало. Тем не менее достигнут некоторый успех в определении последовательности оснований в одиночной цепи олигодезоксинуклеотидов. Такие продукты распада легко получаются в результате обработки дезоксирибонуклеиновых кислот дезоксирибонуклеазами. Панкреатическая дезоксирибонуклеаза [350] (дезоксирибонуклеаза I) активна в нейтральном растворе, требует присутствия магния или некоторых других двухвалентных катионов и имеет минимальный молекулярный вес 61566 [351]. Этот фермент катализирует гидролиз ДНК до сложной смеси, из которой с помощью хроматографии на бумаге, электрофореза [352] и ионообменных методов [353] были выделены дезоксинуклеозид-5 -фосфаты ( 1 %), ряд динуклеотидов (- 16%), тринуклеотиды и более высокомолекулярные олигодезоксинуклеотиды с 5 -фосфатной группой на конце. Хотя специфичность действия дезоксирибонуклеазы I не установлена полностью, ясно, что расщепление происходит по связи —3 - О — Р. Изучение динуклеотидов, содержащих как пуриновые, так и пиримидиновые основания, указало на то, что такие соединения являются почти исключительно 5 ф—Пир—З ф—5 Пур, изомерная же последовательность 5 ф—Пур—З ф—5 Пир фактически отсутствует. Предположение, что ферментом атакуются преиму- [c.421]

    Как и в случае дезоксирибонуклеиновых кислот, имеется ряд примеров изучения молекулярного веса рибонуклеиновых кислот. Наиболее изученной рибонуклеиновой кислотой является, по-види-мому, РНК из вируса табачной мозаики она имеет молекулярный вес 1,94-10 О, 6-10 по данным светорассеяния, седиментации и вискозиметрических измерений [191]. При растяжении или сжатии молекулы под действием тепла, а также при изменении ионной силы инфекционность РНК не изменяется, если ее молекулярный вес при этом не уменьщается. Вирус желтой мозаики турнепса (сферический вирус) также содержит высокомолекулярную РНК (приблизительно 2,3-10 ) [404], а многие из выделенных клеточных РНК имеют молекулярнй вес 1 10 —2-10 [192]. Как это было неоднократно показано, клеточные РНК состоят из двух основных компонентов, причем один из них имеет такой же высокий молекулярный вес, а молекулярный вес другого компонента составляет 3-10 — 7-10 . Еще более низкий молекулярный вес найден для растворимых или транспортных РНК, которые содержат только 60—100 нуклеотидов. [c.562]

    Сведения об относительной стабильности конформаций различных рибонуклеиновых кислот можно получить при сопоставлении относительных скоростей фосфоролиза их иолииуклеотидфосфорила-зой (рис. 8-35). При 37° эти скорости уменьшаются в следующем порядке РНК из ВТМ > высокомолекулярные микросомальные РНК > растворимые РНК 1327]. Действительно, в случае растворимой РНК реакция происходит на 20—30%, причем фосфоролизу [c.623]

    Другую группу важнейших биологических высокомолекулярных соединений составляют нуклеиновые кислоты. Они встречаются во всех видах живой материи. В состав нуклеиновых кислот входят остатки фосфорной кислоты, пентозановьгх сахаридов и пуриновых или пиримидиновых оснований. Если сахаридом, входящим в состав нуклеиновых кислот, является рибоза, то их называют рибонуклеиновыми кислотами (РНК), а нуклеиновые кислоты, содержащие дезоксирибозу,—дезоксирибонуклеиновыми (ДНК). В состав молекул ДНК входят остатки следующих азотистых, оснований аденина, цитозина и тимина (у высших животных и растений некоторое количество цитозина заменено на 5-метилцитозин). [c.178]

    При осторожном щелочном гидролизе рибонуклеиновых кислот или гидролизе с помощью ферментов (например, рибонуклеазой для рибонуклеиновых кислот, фосфодиэстеразой змеиного яда для дезоксирибонуклеиновых кислот) можно расщепить высокомолекулярные полинуклеотиды на простые нуклеотиды. В молекуле простого нуклеотида тот или иной из перечисленных выше гетероциклов связан с рибозой (в ДНК — с дезоксирибозой) и фосфорной кислотой, этерифицирующей сахарную часть нуклеотида. Это явствует из того, что среди продуктов гидролиза, проведенного в соответствующих условиях, можно найти свободный гетероцикл и изомерные фосфаты Д-рибозы (соответственно /)-2-дезоксири-бозы). С другой стороны, гидролиз нуклеиновых кислот или изолированных нуклеотидов можно (ферментативно или действием аммиака) довести и до соответствующих нуклеозидов, т. е. отщепить фосфорную кислоту, оставив связанными гетероцикл и сахар. Таким образом, нуклеотиды — мономеры , поликонденсацией которых (с отщеплением воды) образуются полинуклеотиды ( полимеры ), — представляют собой фосфорные вфиры нуклеозидов. Поскольку продукты гидролиза нуклеозидов — пириииди-новые и пуриновые гетероциклы (а также рибоза или дезоксирибова), идентифицируются сличением с известными образцами, остается установить место связи гетероцикла с сахаром, характер их циклизации, конфигурацию гликозидного центра и, наконец, место фосфорилирования сахарной части молекулы. [c.712]

    Нуклеиновые кислоты (полинуклеотиды) — универсальные биополимеры, высокомолекулярные органические соединения, содержащеиеся в любой клетке цепи из нуклеотидов, образованных из азотистых оснований, остатков фосфорной кислоты и сахаров по типу последних (рибоза и дезоксирибоза) различают рибонуклеиновую кислоту (РНК) и дезоксирибонуклеиновую кислоту (ДНК). [c.190]

    Хоглендом и другими исследователями изолированы из печени и иных тканей водорастворимые рибонуклеиновые кислоты с молеку,лярным весом от 18 ООО до 35 000. Каждая из этих низкомолекулярных рибонуклеиновых кислот связывает аденилат той или иной аминокислот . , а затем через более сложн .ге рибонуклеиновые кислот , (посредники) передает ее высокомолекулярной рибонуклеиновой кислоте микрозом, где они используются для синтеза белков. [c.430]

    Влияние 7 поразительно он почти полностью подавляет синтез белкой. По-видимому, 7 задерживает образование комплекса рибонуклеиновых кислот и высокомолекулярных нуклеопротеидов, которое необходимо для синтеза белка 1321—328]. Если образования белков не происходит, деятельность клеточных процессов сводится к попыткам компенсировать это производством большего количества определенных типов рибонуклеиновых кислот, участвуюш их в синтезе белка. В результате, когда 7 тормозит синтез белка, в клетке наканливаются рибонуклеиновые кислоты. Аккумулирован-ная рибонуклеиновая кислота после удаления хлорамфеникола может быть вновь гидролизована до нуклеотидов [329]. Интересно, что способность 7 подавлять белковый синтез наблюдалась во внеклеточных экспериментальных системах, полученных из таких микроорганизмов, которые устойчивы к бактериостатическому действию 7 из-за непроницаемости их клеточп1.1х мембран [330]. Важно также, что ь-трео и ь-эритроизомеры 7 почти не влияют на белковый синтез [322]. Таким образом, биологическое влияние 7 сейчас хорошо объясняется на субклеточном уровне, и остается только более точно определить природу нуклеопротеинового рецептора в этом направлении достигнут некоторый прогресс [328]. [c.169]

    Нуклеиновые кислоты представляют собой высокомолекулярные соединения, состоящие из мононуклеотидов, в которых цепи образуются за счет монофос-фатных связей между положением 5 одного нуклеозида и положением 3 другого. Остов цепи, таким образом, состоит из фосфатных и сахарных звеньев, к которым через регулярные интервалы присоединены пуриновые и пиримидиновые основания. Эти полимерные соединения известны как рибонуклеиновая [c.577]

    В природе встречаются две высокомолекулярные нуклеиновые кислоты дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). ДНК находится преимущественно в хромосомах и представляет собой основной генетический материал клетки. Обычно в клетках содержится гетерогенный набор ДНК различных типов, 0тл1ичающихся последовательностью оснований. Гомогенную ДНК можио найти в бактериофаге. РНК служит посредником в передаче генетической информации от ДНК к белку при его синтезе. Больше всего ее в цитоплазме, особенно в рибосомах. Биологическая роль нуклеиновых кислот рассмотрена в последующих главах. В настоящей главе мы остановимся на элементах первичной структуры нуклеиновых кислот. [c.302]


Смотреть страницы где упоминается термин Рибонуклеиновые кислоты высокомолекулярные: [c.136]    [c.221]    [c.623]    [c.674]    [c.427]    [c.10]    [c.1049]   
Хроматография Практическое приложение метода Часть 2 (1986) -- [ c.176 , c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Рибонуклеиновые кислоты



© 2025 chem21.info Реклама на сайте