Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Форма линейных макромолекул в растворе

    Свойства полимеров резко зависят от геометрической формы макромолекул. Так, линейные полимеры, обладая большой прочностью, эластичностью, могут образовывать растворы с высокой вязкостью. Это связано с высокой степенью ориентации линейных макромолекул друг относительно друга и их довольно плотной упаковкой. Разветвленные полимеры обладают иногда даже большей растворимостью по сравнению с линейными полимерами. Степень разветвленности определяет их прочность и вязкость растворов. Например, полимеры с высокой степенью разветвления образуют растворы с пониженной вязкостью, что объясняется меньшей гибкостью этих макромолекул, а значит, и незначительной их асимметрией. Разветвленность макроцепи является еще одним видом нерегулярности макромолекул полимера, который мешает и даже препятствует процессу кристаллизации. С увеличением степени разветвленности макромолекул полимеры приближаются по физическим свойствам к обычным низкомолекулярным веществам. Сетчатые полимеры по свойствам очень отличаются от линейных и разветвленных полимеров. Они не растворяются и не плавятся без разложения, практически не кристаллизуются. Все эти и другие свойства зависят от степени связывания макромолекулярных цепей [c.382]


    Характерной особенностью растворов ВМВ является их высокая вязкость по сравнению с чистым растворителем даже при малых концентрациях. Особенно сильно это свойство проявляется у полимеров с длинными линейными макромолекулами, например у каучука. Растворы полимеров с той же молекулярной массой, но сферической формой молекул (глобулярные ВМВ) имеют меньщую вязкость. Отсюда следует, что вязкость растворов полимеров возрастает пропорционально асимметрии их молекул. При одинаковой химической структуре молекул вязкость закономерно возрастает с увеличением молекулярной массы. Вязкость зависит также от концентрации полимера и межмолекулярных сил взаимодействия. [c.472]

    Форма линейных макромолекул в растворе [c.41]

    Форма линейных макромолекул в растворе меняется при течении из-за наличия градиента скорости течения. Клубок, стремясь выпрямиться и ориентироваться по направлению течения, периодически растягивается и сжимается при ориентационном вращении. Таким образом, значения [т ] и к зависят от градиента скорости течения, т. е. от скорости сдвига. Экспериментальные данные показали следующую зависимость [т]] от скорости сдвига. [c.56]

    Важной характеристикой гидродинамического поведения растворов является их вязкость. В частности, характеристическая вязкость раствора линейного полимера связана с размерами, формой его макромолекул в растворе и степенью полимеризации (см. III.4), [c.119]

    Энергия спиральной структуры превышает энергию линейной всего на 0,7 ккал/моль (2,9 кДж/моль). Этот нетривиальный результат, полученный из расчета, наводит на требующую экспериментального изучения мысль о том, что в растворе макромолекулы полиэтилена могут существовать в двух равновесных формах линейной и спиральной. [c.304]

    Известно, что макромолекулы полимеров в разбавленных растворах практически изолированы друг от друга. Конформация линейных макромолекул может быть описана моделью цепочки с прямолинейными звеньями. Такая цепь в разбавленных растворах принимает форму свернутого гауссова клубка, что соответствует конформации реальных гибких макромолекул. Кун [4] показал, что этот клубок по форме ближе к эллипсоиду вращения, средняя длина которого Г(, примерно вдвое больше среднего поперечника О. Величина характеризует среднеквадратичное расстояние между концами цепи макромолекулы. В общем случае для макромолекулы, состоящей из N звеньев длиной I, определяется двойной суммой [c.304]


    Свойства полимеров зависят от геометрической формы макромолекул. Так, линейные полимеры, обладая большой прочностью, эластичностью, могут образовывать растворы с высокой вязкостью. Это связано с высокой степенью ориентации линейных макромолекул друг относительно друга и их довольно плотной упаковкой. Разветвленные полимеры обладают иногда даже большей растворимостью по сравнению с линейными полимерами. Степень разветвленности определяет их прочность и вязкость растворов. Например, полимеры с высокой степенью разветвления образуют растворы с пониженной вязкостью, что объясняется меньшей гибкостью этих макромолекул, а значит, и незначительной их асимметрией. Разветвленность макроцепи является еще одним видом нерегулярности макромолекул полимера, который мешает и даже препятствует кристаллизации. Сетчатые полимеры по свойствам очень отличаются от линейных и разветвленных полимеров. Они не растворяются, не плавятся без разложения, практи- [c.361]

    Все линейные полимеры принципиально могут быть переведены в раствор. Растворы линейных полимеров даже при относительно небольших концентрациях обладают высокой вязкостью, в десятки и сотни раз превышающей вязкость соответствующих растворов низкомолекулярных соединений. Многие линейные полимеры могут плавиться без разложения, причем их расплавы также обладают очень высокой вязкостью. Линейные полимеры отличаются хорошими физи-ко-механическими свойствами большой прочностью и эластичностью. Гибкость макромолекулы линейных полимеров способствует их растворению и плавлению, а способность гибкой макромолекулы изменять форму под влиянием внешних усилий обусловливает высокие эластические свойства. Значительная разрывная прочность линейных полимеров объясняется главным образом тем, что линейные макромолекулы могут достигать высокой степени ориентации относительно друг друга и иметь большую плотность упаковки, что приводит к возникновению многочисленных межмолекулярных связей с высокой суммарной энергией. [c.51]

    При растворении полимеров наблюдаются различия в растворимости, обусловленные строением и формой макромолекул (см. табл. 4, стр. 16). Линейные полимеры переходят в раствор через стадию набухания чем более вытянутую форму имеет макромолекула в растворе, т. е. чем выше растворяющая способность растворителя для этого полимера, тем выше степень набухания и тем больше вязкость образующегося раствора при одинаковой концентрации. Замещенные макромолекулы, как правило, легче растворимы, чем незамещенные (эфиры целлюлозы по сравнению с целлюлозой). Для линейных полимеров скорость растворения и вязкость раствора зависят от размеров молекулы растворяемого вещества. Вещества, состоящие из шарообразных молекул, растворяются, как и низкомолекулярные соединения, без набухания, они образуют низковязкие растворы независимо от, величины молекулы. Существенное различие между процессом растворения низко- и высокомолекулярных соединений состоит в том, что в растворах низкомолекулярных веществ достигается предел насыщения при этом образуется осадок и растворимость не зависит от количества осадка (правило Гей-Люссака). При растворении полимеров в большинстве растворителей наблюдается либо неограниченное растворение, либо полное отсутствие его ). Если полимер обладает значительной полидисперсностью, т. е. в нем одновременно присутствуют молекулы малого и большого молекулярного веса, но одинакового состава и строения, и если применяется относительно плохой растворитель или смесь растворителей, то молекулы более низкого молекулярного веса могут растворяться, тогда как молекулы с большим молекулярным весом только набухают в этом случае осадок не содержит тех молекул, которые находятся в растворе, и концентрация полимера в рас- [c.129]

    Молекулы высокомолекулярных веществ могут быть линейными и разветвленными, причем длина молекулярных цепей может быть сравнительно большой — превышать 1 мкм. Именно линейной формой макромолекул определяются типичные свойства полимеров каучукоподобная эластичность, способность образовывать прочные пленки и нити, набухать, давать при растворении вязкие растворы и т. д. [c.426]

    Для определения молекулярного распределения этот метод неприменим. Путем измерения угловой зависимости интенсивности рассеяния можно определить форму макромолекул в растворах, при этом для линейных макромолекул определяется квадрат расстояния между концами цепей в растворе. Таким образом, возникает возможность проследить изменение формы макромолекул в растворителе и смесях растворителей. Из зависимости интенсивности рассеяния от концентрации получается второй вириальный коэффициент В, который лежит в основе различных расчетов. Экспериментально следует обращать особое внимание на оптическую пустоту растворов, т. е. очистку их от пыли, и на точность при определении показателей преломления раствора и растворителя. [c.161]


    Вследствие легкости и простоты определения вязкости растворов высокомолекулярных соединений такой метод является одним из самых распространенных для характеристики этого класса соединений. Штаудингеру удалось показать, что вещества с линейными и сферическими молекулами обладают в растворах различной вязкостью (см., например, табл. 4, стр. 16) и что для линейных макромолекул вязкость раствора пропорциональна их молекулярному весу. Измерения вязкости при различных температурах позволяют решить вопрос, образует ли исследуемое вещество коллоидный или истинный раствор (см. стр. 14 и 144). Таким образом, путем вискозиметрических измерений может быть доказано наличие отдельных макромолекул результаты измерений дают важные сведения о строении высокомолекулярных соединений и о их форме в применяемых растворителях. Для линейных макромолекул измерение вязкости является методом быстрого определения молекулярного веса, если принципиально для данного материала установлена связь между вязкостью растворов и молекулярным весом. [c.161]

    Формула Эйнштейна пригодна в тех случаях, когда частица растворенного вещества имеет шарообразную форму независимо от того, относится ли вещество к высокомолекулярным соединениям илн к иизкомолекулярным. Растворы веществ с линейными макромолекулами не подчиняются [c.116]

    Разнообразие конформаций макромолекул в растворе определяется их гибкостью, длиной цепей, концентрацией раствора и природой растворителя. В разбавленных растворах макромолекулы, более независимы друг от друга и их конформационный-набор более богат, чем в концентрированных растворах. Линейные макромолекулы в растворе преимущественно находятся в той форме, которая в наибольшей степени отвечает равновесному состоянию данной системы, т. е. состоянию, соответствующему минимуму потенциальной энергии. В разбавленных растворах число наиболее вероятных конформаций макромолекул определяется двумя факторами внутримолекулярным взаимодействием между соседними атомами и группами атомов и взаимодействием молекул раствори- [c.56]

    Линейные полимеры отличаются высокими физико-механическими показателями высокими пределом прочности при разрыве и эластичностью. Эти особенности свойств линейных полимеров вытекают из их строения. Наличие двух типов связей—химических валентных связей и физических межмолекулярных взаимодействий,—различающихся по энергетической характеристике, определяет возможность растворения линейных полимеров. Высокой степенью асимметрии макромолекул обусловлена высокая вязкость растворов линейных полимеров. Гибкость макромолекул линейных полимеров способствует их растворению, а способность гибкой макромолекулы изменять форму под влиянием внешних условий обусловливает хорошие эластические свойства. Высокий предел прочности при разрыве линейных полимеров объясняется главным образом тем, что линейные макромолекулы могут достигать значительной степени ориентации относительно друг друга и большой плотности упаковки, что приводит к возникновению многочисленных межмолекулярных связей с высокой суммарной энергией. [c.302]

    Величина а свидетельствует о степени гибкости макромолекул полимера в данном растворителе. Для полимеров, макромолекулы которых имеют форму глобулы или предельно разветвленной цепочки, величина а приближается к нулю и вязкость раствора не зависит от молекулярного веса растворенного вещества. Молекулярный вес таких полимеров невозможно определить по предельному числу вязкости раствора. Константа а для полимеров, в которых макромолекулы линейной формы вытянуты в растворе как жесткие палочки, становится равной 1,5—1,7. [c.65]

    Для линейных макромолекул, имеющих форму хаотически закрученного клубка, в растворителе, в котором данный полимер растворяется хорошо (хороший растворитель), а больше 0,5. Если в такой раствор добавлять растворитель, в котором данный полимер растворяется плохо (плохой растворитель), а постепенно уменьшается вплоть до значения 0,5 при приближении к точке осаждения [16, 34]. При применении различных растворителей и при различных температурах формы клубков макромолекул не одинаковы, поэтому полу чаются различные значения [v]]. Это было показано пу тем измерения [tj] и молекулярного веса методом свето- [c.48]

    Форма макромолекул в растворе. Под влиянием колебатель- 0-вращательных движений макромолекулы полимера принимают в растворах самые разнообразные формы. Разнообразие )орм макромолекул определяется гибкостью цепи, ее длиной, концентрацией раствора и природой растворителя. В разбавленных растворах макромолекулы менее зависят друг от друга ч своих тепловых движениях. Поэтому конформационный набор лх все более обогащается новыми формами, которые в твердом юлимере и даже в растворе, но более высокой концентрации, невозможны вследствие межмолекулярного взаимодействия. Предельными формами макромолекул в растворе являются вытянутая нить или нить, свернутая в рыхлый клубок. Из много численных возможных конформаций линейные макромолекулы стремятся занять такое положение, которое в наибольшей сте тени отвечает равновесному состоянию данной системы, т. е.. . осто янию, соответствующему минимуму потенциальной энергии. [c.59]

    Позднее Кремер [98] но измерениям приведенной вязкости, седиментации и диффузии в концентрированных растворах тиоцианата калия в температурном интервале 20 — 40° и в растворах фосфата или хлорида натрия выше точки застудневания показал, что желатина растворяется в виде одиночных молекул со средним молекулярным весом около 120 000 и с коэффициентом диссимметрии / //о около 3. Этот коэффициент диссимметрии значительно больше, чем у любого другого белка того же веса, и может быть сравним только с коэффициентами диссимметрии линейных макромолекул, имеющих высокие приведенные вязкости. Он пришел к выводу, что растворенные молекулы свернуты примерно до 1/5 своей выпрямленной длины. Несмотря на значительную свернутость, молекулы желатины имеют в растворе все же более продолговатую форму, чем другие до сих пор изученные белки . [c.551]

    Макромолекулы природных и некоторых синтетических высокомолекулярных соединений чаще всего имеют форму неразветвленной цепи или цепи с небольшими ответвлениями. Такая линейная форма макромолекул обусловливает типичные для полимеров свойства — эластичность, способность образовывать нити и пленки высокой прочности, давать при растворении вязкие растворы. Эти свойства опреде-ляются гибкостью линейных молекул, способностью к колебательно-вращательному движению отдельных звеньев макромолекул вокруг соединяющих их оди- [c.243]

    Для растворов высокомолекулярных соединений формула Эйнштейна неприменима, так как макромолекулы имеют не шарообразную, а нитевидную форму и даже в разбавленных растворах взаимодействуют, образуя агрегаты, иммобилизующие жидкость. Измеренная в опыте вязкость растворов высокополимеров оказывается всегда значительно выше вычисленной теоретически по формуле Эйнштейна. Кроме того, для растворов высокополимеров не наблюдается линейного роста вязкости с ростом концентрации раствора она возрастает очень сильно благодаря образованию сетки из макромолекул. [c.221]

    Целлюлоза и крахмал — характерные представители двух типов высокомолекулярных соединений — с линейными и глобулярными (шарообразными) молекулами. Макромолекула целлюлозы — нитевидной формы, длиной около 1,5 мк. При такой длине ее можно было бы увидеть под микроскопом, если бы толщина нити (0,5 ммк) не была много меньше ее длины. Вещества подобного рода с нитевидными молекулами могут легко приобретать волокнистое строение, при переходе в раствор набухают и дают вязкие растворы. Молекула амилопектина— шарообразной формы, что обуславливает способ- [c.634]

    Макромолекулы линейных полимеров характеризуются высокой степенью асимметрии. Поэтому отдельные участки вытянутой молекулярной цепи настолько удалены друг от друга, что взаимное влияние становится ничтожно малым. Вследствие этого некоторые участки молекулярной цепи при растворении (когда подвижность и гибкость цепи возрастает) и при процессах деформации полимера ведут себя как кинетически самостоятельные единицы. Такие участки молекулярной цепи называют сегментами. Размер участка молекулярной цепи, проявляющего кинетическую независимость (сегмента), не является постоянной и зависит от гибкости молекулярной цепи и условий, в которых находится полимер (температура и концентрация раствора, природа растворителя, температура, величина и скорость приложения нагрузки прн деформации). Благодаря подвижности отдельных сегментов молекулярной цепи при их тепловом движении макромолекула непрерывно меняет свою форму конформацию), и так как число возможных конформаций изогнутой молекулы очень велико, а вытянутая только одна, то макромолекула большую часть времени имеет изогнутую форму, что очень важно для понимания особенностей свойств растворов и процессов деформации полимеров. [c.44]

    Полиэтилен со строго линейной формой макромолекул можно получить разложением диазометана в растворе на холоду в присутствии медного порошка в качестве катализатора [c.303]

    I рупп в макромолекуле и притяжения противоионов к полииону) поведение водных р-ров линейных П. существенно отличается от поведения как неионогенных (незаряженных) полимеров (см. Растворы полимеров), так и низкомол. электролитов (см. также Растворы электролитов). Благодаря электростатич. отталкиванию между одноименно заряженными ионогенными группами макромолекула П. стремится развернуться и приобрести более асимметричную форму по сравнению с формой статистич. клубка, харак- [c.43]

    Линейные полимеры обычно растворимы в том или ином растворителе, а иногда и в нескольких. В растворе гибкая макромолекула стремится принять форму рыхлого клубка, который постоянно меняет свои очертания вследствие вращения вокруг различных связей. Плотность клубка зависит от степени взаимодействия растворителя с цепью полимера. [c.316]

    В этом отношении особый интерес представляют лестничные полимеры (и блок-лестничные, у которых макромолекула состоит из чередующихся линейных и лестничных блоков), совмещающих достоинства линейных (способность формоваться и растворяться ) и трехмерных полимеров (теплостойкость, прочность). В качестве примера можно привести полиимиды, которые относятся к полигетероариленам [89, 90], ароматические полимеры, содержащие гетероциклы в основных цепях. Их получают реакцией полн-циклоконденсации [c.325]

    Один из создателей молекулярной теории растворов высокомолекулярных соединений ШтаудингерО представлял эти макромолекулы в форме палочек, свободно перемещающихся в жидкости. Однако экспериментальное исследование поляризации растворов высокомолекулярных соединений показало, что поведение макромолекул высокомолекулярных соединений в растворе сходно с поведением свернутых в клубок нитей. Конформации таких клубков и нитей в них в жидкой среде непрерывно изменяются вследствие теплового движения. В целом же форма клубка остается близкой к форме элипсоида вращения. Это подтверждается тем, что, в то время как длина линейных макромолекул значительно превосходит их поперечный размер — в сотни и тысячи раз, степень ассоциации этих молекул невелика и чуть выше 10. [c.61]

    Низкие значения характеристической вязкости и величина а <С 0,5 могут быть объяснены сильной разветвлепностью полимерных цепей, в результате чего форма макромолекул в растворе должна значительно отличаться от формы линейных полимеров. Метод гомофазной радиационной полимеризации даже в случае бифункциональных мономеров не дает возможности получения строго линейных полимеров в случае же тетра- и гексафункциональпых мономеров наряду с обычными реакциями передачи цепи имеет место инициирование и рост цепи по остаточным двойным связям в полимере, что в конечном счете должно привести к сильно запутанным, а возможно даже сшитым участкам. Таким образом, полимер в растворе должен представлять собой микрогель, свойства которого будут значительно отличаться от растворов линейного полимера того же молекулярного веса. [c.102]

    В качестве диамина при образовании больших макромолекул применяется в строго эквимолярных соотношениях гидразин. Получаемый линейный полпмер растворим в полярных растворителях (диметилформамиде, диметилсульфоксиде). Волокно ликра формуется из раствора сухим или мокрым способом. [c.163]

    Если новолачные жидкие или твердые смолы обрабатывать в щелочном растворе формалином или его производными, содержащими активную метиленовую группу, например уротропином ( H2)6N4 или лучше полимерами формальдегида, то они переходят в резольную форму, склонную далее отверждаться. Так, при нагревании новолачной смолы с уротропином (гексамети-лентетрамином) последний распадается на аммиак, являющийся катализатором реакции и формальдегид — химически сшивающий линейные макромолекулы поперечными связями. [c.327]

    При увеличении степени диссоциации возрастает электростатическое отталкивание одноименно заряженных групп макромолекул, что приводит к существенному изменению их конформации в растворе, а именно цепи, свернутые в клубок, распрямляются и стремятся принять форму, приближающуюся к линейной. В результате этого увеличивается эффективный размер молекул и существенно изменяются физико-химические свойства растворов, например, возрастает вязкость, изменяется интенсивность светорассеяния. При уменьшении степени диссоциации макромолекулы, наоборот, сворачиваются, приобретая конформации с наибольшим значением энтропии в системе. Если pH раствора поддерживают постоянным, то в результате электростатического взаимодействия ионизированной части полярных групп и теплового двилсения уста [(а вливаются определенные конформации молекул. Состояние равновесия зависит от величины заряда полииона, состава раствора, температуры. [c.151]

    Общий подход к рассмотрению свойств высокомолекулярных соединений оказывается возможным потому, что многие их особенности зависят больше от формы макромолекул, чем от их химической природы. Так, характерные особенгюсти линейных полимеров — способность образовывать прочные волокна и пленки, значительная эластичность, способность растворяться, а при повышении температуры плавиться. Типичные представители линейных полимеров — это каучук и его сиитетические аналоги, 1юлиамиды, полиолефины. [c.316]

    Первые опыты по совместному филированию полисахаридов и белков проведены на альгинатах, линейных полимерах манну-роновой и гулуроновой кислот, извлеченных из водорослей, и на пектинах, состоящих из цепей галактуроновой кислоты, этери-фицированных метиловыми радикалами [47]. Эти молекулы, натриевые соли которых растворимы в воде, мгновенно выпадают в осадок в форме солей кальция. Данное свойство позволяет при pH, близких к нейтральным, приготавливать прядильные растворы, которые после экструзии через фильеры коагулируют в обрабатывающих растворах, содержащих хлористый или уксуснокислый кальций. Этот способ совместного филирования был распространен также на каррагенаны макромолекулы, образованные присоединением сульфатированной галактозы, которые [c.543]

    Растворимость полимеров, как и другие их физические свойства, определяется молекулярной массой, геометрической формой и химическим строением макромолекул. Сравнительно легко растворяются в растворителях полимеры с линейной или разветвленной формой микромолекул. Наличие в макромолекулах такого полимера различных функциональных групп может либо облегчить, либо затруднить подбор растворителя. Кристаллические полимеры обычно растворяются только при температуре, близкой к их температуре плавления. Например, полиэтилен растворяется во многих растворителях только при нагревании (120°С). Если между полимером и растворителем происходит специфическое взаимодействие (например, возникают водородные связи), то раствор может быть получен и при более низкой температуре. Так, полиамид на основе адипиновой кислоты и гексаметилеидиамина растворяется в холодной муравьиной кислоте [20]. [c.127]


Смотреть страницы где упоминается термин Форма линейных макромолекул в растворе: [c.66]    [c.29]    [c.555]    [c.443]    [c.211]    [c.303]    [c.72]    [c.555]    [c.58]    [c.8]   
Смотреть главы в:

Химия высокомолекулярных соединений -> Форма линейных макромолекул в растворе




ПОИСК





Смотрите так же термины и статьи:

Макромолекула в растворе

Макромолекулы, форма

ОДО-Формы в растворе



© 2025 chem21.info Реклама на сайте