Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтетическая активность

    Если в качестве критериев токсичности рассматриваются интегральные показатели — фотосинтез, деструкция, соотношение Ф/Д, коэффициент Ф/Б (фотосинтетическая активность биомассы), содержание хлорофилла в планктоне, т. е. показатели, принимаемые за основу при изучении первичной продукции водоемов,— то эти показатели также следует предварительно проследить в динамике, так как они значительно варьируют на протяжении вегетационного сезона в связи с экологическими сукцессиями в фитопланктоне. [c.240]


    Ингибиторы протеаз. Ингибиторы белковой природы были выявлены в листьях томата [90] и люцерны [11]. Их физиологические особенности довольно примечательны. Накопление ингибиторов I и II томата регулируется гормоном, который появляется при повреждениях, наносимых листьям. Кроме того, когда листья помеш,ают в атмосферу без диоксида углерода ингибитор I синтезируется вдвое быстрее, чем в обычных условиях следовательно, можно спросить, связан ли он с фотосинтетической активностью [98]. [c.256]

    Незрелые плоды имеют обычно зеленую окраску и содержат функционирующие хлоропласты. Во многих случаях, когда плоды созревают, хлоропласты превращаются в нефотосинтезирующие хромопласты. По мере потери хлоропластами фотосинтетической активности разрушается и хлорофилл. Иногда разрушаются и хлоропластные каротиноиды, но часто вместо них образуется гораздо большее количество других каротиноидов, которые и придают окраску зрелым плодам. Хорошо известным примером такой замены служат плоды томата, которые приобретают красную окраску в результате интенсивного синтеза ликопина (10.23). [c.365]

    Фотосинтез, сопровождающийся вьщелением О2, свойственный всем эукариотным организмам и двум группам эубактерий (цианобактериям и прохлорофитам), возможен в диапазоне от 300 до 750 нм. Для эубактерий, способных к осуществлению бескислородного фотосинтеза, диапазон излучений, обеспечивающих фотосинтетическую активность, увеличивается в сторону более длинных волн, захватывая ближнюю ИК-область для зеленых бактерий вплоть до 840 нм, пурпурных — до 920 нм, а для некоторых представителей этой группы — до 1100 нм. Спектры активности фототаксиса у эубактерий совпадают со спектрами фотосинтетической активности, поскольку фоторецепторами в обоих случаях служат одни и те же пигменты. У экстремально галофильных архебактерий рода НаЬЬасГепит пигменты, запускающие фотосинтез и обеспечивающие фототактическую реакцию, различны и активны в диапазоне длин волн примерно от 450 до 600 нм (см. гл. 18). [c.131]

    Представляло интерес сопоставить способность различных частей побега к образованию катехинов с их общей фотосинтетической активностью (рис. 33). [c.102]

    Полисахариды. Среди полисахаридов и их производных, в больших количествах встречаюш,ихся в растениях, некоторые (например, целлюлоза высших растений и альгиновая кислота водорослей) слишком инертны или слишком удалены от области фотосинтетической активности, чтобы можно было предполагать их прямую связь с фотосинтезом. Крахмал является единственным полимерным углеводом, образование которого непосредственно связано с фотосинтетической деятельностью. [c.46]


    Среди различных наблюдений, подтверждающих физиологическую концепцию фотосинтеза, имеются следующие различие в фотосинтетической активности при тождественных внешних условиях растений, выросших в разных. местообитаниях адаптация фотосинтетической актив- [c.285]

    Однако отмечалось, что выращивание водоросли при концентрации суспензии выше 1 см клеток ш л уменьшает их фотосинтетическую активность. [c.530]

    Оглядываясь назад, нельзя не восхищаться неизменной правильностью его выводов, полученных с применением таких экспериментальных методов, которые большинство исследователей не решились бы использовать даже дЛя качественных, не говоря уже о количественных, исследований. Энгельман не только пришел к правильному заключению об общем параллелизме между спектром действия фотосинтеза и спектром поглощения хлорофилла, он также ясно понимал влияние оптической плотности исследуемого образца на эти оба спектра. Его уже давно игнорируемые выводы относительно фотосинтетической активности каротиноидов и фикобилинов теперь, т. е. 65 лет спустя, повидимому, находятся на пути к реабилитации. [c.582]

    Согласно одной интерпретации, первоначально принадлежащей Беркнеру и Маршаллу, выделение Оа и как следствие защитное действие Оз контролировали миграцию жизни на сушу. При низкой концентрации Ог в атмосфере жидкая вода на глубине порядка 10 м будет отфильтровывать большую часть повреждающего УФ-излучения, но позволяя фотосинтетически активному видимому свету достигнуть живых организмов. На этой стадии жизнь в океанах кажется маловероятной, поскольку организмы будут выноситься слишком близко к поверхности при механических перемещениях, и, наверное, ограничивалась безопасными стоячими прудами и озерами. Когда количество Ог и Оз еще более возросло, зона УФ-летальности должна была сократиться до тонкого слоя на поверхности океана так, что жизнь смогла распространиться на просторы океанов, значительно повысив фотосинтетическую активность. Когда содержание кислорода начало возрастать в атмосфере, стремясь к современному уровню, концентрация Оз стала достаточно большой, чтобы обеспечить защиту живых организмов на земной поверхности без участия слоя жидкой воды. Существование жизни на суше стало возможным, по-видимому, начиная с [0г]>10- САУ. [c.214]

    Для эффективного протекания процесса фотосинтеза необходимо возбуждение более чем одного фотосинтетически активного пигмента. Этот результат предполагает возможность участия двух главных процессов в реакции преобразования энергии при фотосинтезе. Квантовый выход фотосинтеза падает при длинах волн света больше, чем длина волны максимума поглощения в красной области (эффект Эмерсона, или красное падение ), хотя поглощение в этой области (675—720 нм) продолжает приводить к заселению уровня Si" хлорофилла а. Однако если к возбуждающему световому пучку добавляется более коротковолновый свет (Ж670 нм), то квантовый выход фотосинтеза существенно возрастает. Низкие квантовые выходы фотосинтеза, получаемые при длинноволновом освещении, могут быть подняты до нормальных значений одновременным освещением коротковолновым светом. [c.233]

    Хромопротеины являются непременными и активными участниками аккумулирования энергии, начиная от фиксации солнечной энергии в зеленых растениях и утилизации ее до превращений в организме животных и человека. Хлорофилл (магнийпорфирин) вместе с белком обеспечивает фотосинтетическую активность растений, катализируя расщепление молекулы воды на водород и кислород (поглощением солнечной энергии). Гемопротеины (железопорфирины), напротив, катализируют обратную реакцию — образование молекулы воды, связанное с освобождением энергии. [c.78]

    Характер развития фотосинтетической активности во времени заметно зависит от вида, возраста и условий роста растения. В течение первых минут после освещения обычно появляется небольшая фотосинтетическая активность, которая быстро усиливается в продолжение первых двух часов, тогда как весь процесс формирования хлоропластов из этиопластов завершается за 48 ч. [c.359]

    В то же время получены экспериментальные доказательства использования эритробактерами энергии света установлено обратимое фотоокисление бактериохлорофилла а реакционного центра, показано светозависимое включение СО2 и повышение уровня АТФ в клетке установлена способность мембранных препаратов к фотофосфорилированию. Однако фотосинтетический аппарат, имеющийся в клетках Егу1кгоЬас1вг, не может обеспечить их рост. Облигатная зависимость от молекулярного кислорода связана с тем, что для эритробактеров основным источником энергии служит 02-зависимое дыхание. Фотосинтетическая активность может иметь значение для поддержания жизнеспособности клеток в отсутствие в среде субстратов, обеспечивающих рост. [c.302]

    Наряду с биотестированием существуют специальные методы биодиагностики состояния среды обитания, которые включают в себя морфогенетические (генный анализ, морфологические и анатомические изменения и др.), биофизические и биохимические методы (биолюминесценция, фотосинтетическая активность и др.), биоэнергетические и иммунологические методы, токсикологические и эмбриологические методы, популяционные и экосистемные методы. [c.621]


    Длина волны света, поглощаемого хлорофиллами и другими фотосинтетическими пигментами, определяется свойствами этих молекул именно от этого зависит, какая часть солнечного спектра может быть использована растениями (фотосинтетически активная радиация, ФАР). Она составляет в пересчете на энергию 45—50% всего падающего на растение солнечного света. Способность улавливать свет — первый из ограничительных факторов, определяющий эффективность фотосинтеза, если исходить из количества падающего света. [c.45]

    Выход биомассы зависит, таким образом, от площади коллектора солнечной энергии (листьев), функционирующих в течение года, и числа дней в году с такими условиями освещенности, когда возможен фотосинтез с максимальной скоростью, что определяет эффективность всего процесса. Результаты определения доли солнечной радиации (в %), доступной растениям (фотосинтетически активной радиации, ФАР), и знание основных фотохимических и биохимических процессов и их термодинамической эффективности позволяют рассчитать вероятные предельные скорости образования органических веществ в пересчете на углеводы. [c.47]

    Растения с их совершенно иным С-автотрофным способом питания устроены совсем иначе. Они синтезируют вещества, необходимые для построения тела, прямо из неорганических соединений, используя солнечный свет как источник энергии. Фотосинтетически активные клетки и ткани с поглощающими свет пигментами (хлорофиллами и кароти-ноидами) ориентированы у растений во внеишюю среду и образуют большие наружные поверхности. Другие важнейшие различия между животными и растениями касаются клеточных оболочек, способности к активному передвижению и способности синтезировать определенные вещества. [c.10]

    Образование каротиноидов. Интенсивно-красный цвет пурпурных бактерий обусловлен присутствием красных каротиноидов (с 12-13 двойными связями и с метокси- и оксогруппами). Здесь пигменты играют не только загцитную роль, но и поглощают свет для фотосинтеза, а также участвуют в рецепции света при фототаксисе. Каротиноиды вместе с бактериохлорофиллами находятся в фотосинтетически активных мембранах (тилакоидах, хроматофорах). [c.83]

    Ни одному исследователю не удалось получить фотосинтез, освещая раствор хлорофилла в органическом растворителе в присутствии двуокиси углерода немногие отрицательные эксперименты такого рода были опубликованы Эйлером [14]. Ушер и Пристли [12] утверждали, что хлорофидьные пленки на желатине образуют перекись водорода и формальдегид, если их выставлять на свет в присутствии углекислого газа. Но это утверждение, хотя и поддержанное Шрайвером [15], было опровергнуто Юартом [13], Эйлером [14], Шиллером и Бауром [16], Уорнером [17] и Ваге-ром [18], которые показали, что если и можно найти следы формальдегида после освещения хлорофилла на воздухе, то он получается за счет окисления самого хлорофилла, а не восстановления углекислого газа. Вильштеттер и Штоль [20] установили, что формальдегид вовсе не образуется, если применять чистые хлорофильные препараты. Шода и Швейцер [19] пыта.тись получить формальдегид и перекись водорода, освещая хлорофилл, осажденный на карбонате кальция, но Вильштеттеру и Штолю не удалось подтвердить этого. Вильштеттер и Штоль полагали, что хлорофилл содержится в листьях в коллоидальной форме, и потому провели несколько экспериментов по фотосинтетической активности коллоидальных растворов хлорофилла в воде. Результаты были полностью отрицательны. Предполагая, что процесс фотосинтеза [c.72]

    В главе XIV мы увидим доказательства в пользу существования хлорофилл-белкового комплекса. Сохранность этого комплекса может быть необходима для фотосинтетической способности хлорофилла. Были разработаны различные методы экстрагирования этого комплекса из листьев, и оказалось, что такие экстракты имеют некоторые из свойств хлорофилла в листе (например, абсорбционный спектр, химическая устойчивость и флуоресценция). Однако и у них отсутствовала фотосинтетическая активность. Эйслер и Порт-гейм [21] сообщили, что искусственные хлорофилл-белковые комплексы, приготовленные добавлением лошадиного серума к хлоро-фильным растворам, могут восстанавливать двуокись углерода и выделять кислород на свету однако методы этих исследователей были грубы и отсутствовало детальное изложение опытов. Нет ничего удивительного в том, что хлорофилл-белковые комплексы неспособны к фотосинтезу, если вспомнить, что изолированные хлоропласты в лучшем случае сохраняют лишь часть своей нормальной фото-синтетической активности. Речь идет не о том, способны ли хлорофильные препараты к полному фотосинтезу, а о том, сохраняются ли в них какие-либо свойства, связанные с ролью хлорофилла в фотосинтезе. Как указано в главе Ш, эта роль сводится к утилизации световой энергии для переноса водородных атомов против градиента химического потенциала. Хлорофилл может это осуществлять или путем чисто физического переноса энергии к клеточной окислительно-восстановительной системе, или же, что более вероятно, прямым химическим участием в этой системе. Отсюда, следовательно, и возникает вопрос, образует ли хлорофилл in vitro окислительно-восстановительную систему, а если это происходит, то увеличивается ли при поглощении света окислительная способность окисленной формы или восстановительная способность восстановленной формы (или и то и другое). [c.73]

    Железо. Лишение железа—наиболее известный прием получения хлоротичных растений (см. главу XV). Бриггс [84] наблюдал, что при дефиците железа растения в условиях сильного и слабого освещения и недостаточного снабжения двуокисью углерода обнаружН вают пониженную фотосинтетическую активность. [c.346]

    В темноте проростки высших растений остаются бесцветными (этиолированными), но начинают зеленеть немедленно при перенесении их на свет. Это явление многократно изучалось, и нет никаких сомнений, что образование хлорофилла в растениях представляет собой фотохимическую реакцию. Но еще в 1885 г. Шимпер открыл, что низшие растения (вплоть до мхов) способны к синтезу хлорофилла в отсутствие света. Майерс [217] не обнаружил разницы в составе и фотосинтетической активности пигментов, образованных у Proto o eus и hlorella в темноте и на свету. Способность синтезировать хлорофилл в темноте распространяется и на хвойные, хотя свет ускоряет у них образование хлорофилла, что иллюстрируют данные. 1юбименко [166] (табл. 70). [c.433]

    Можно сделать одно возражение по поводу механизма (19.13). Реакция (17.13б), повидимому, одинакова с реакцией, при которой восстановители-заменители заменяют воду в фотоеинтезе, бактерий и анаэробно адаптированных водорослей. Если эта реакция может происходить у всех зеленых растений (т. е. не нуждается в посредничестве гидрогеназы), возникает вопрос, почему все они не могут восстанавливать двуокись углерода за счет клеточных или введенных извне органических водородных доноров, т. е. осуществлять фоторедукцию с органическими восстановителями вместо фотосинтеза (Этот вопрос уже ставился в главе VI.) На это следует ответить, что фоторедукция возможна, но у фотосинтетических активных растений вероятность, что o hl прореагирует с аодой, настолько выше вероятности его реакции с другим водородным донором (А — в реакции (19.13в), HgR—в схеме на фиг. 11), что эта последняя реакция остается незаметной, С другой стороны, лри фотоокислении лишь малая часть молекул оСЫ, реагирующих с А, вызовет общее химическое изменение, так как реакция оСЫ с HgO  [c.561]

    Вследствие тесной связи, существующей между флуоресценцией и сенсибилизацией (см. т. I, гл. ХУШ и XIX, и т. II, гл. XXIII), исследование флуоресценции хлорофилла в живых растениях может привести к значительным успехам в понимании механизма фотока-талитического действия этого пигмента в фотосинтезе. Флуоресценция является таким свойством хлорофилла, которое может наблюдаться (и уже наблюдалось) одновременно с измерениями фотосинтетической активности. Измеряя выход флуоресценции, можно получить представление об обмене энергии и процессах рассеяния энергии в фотосинтезирующих клетках, без нарушения их жизненных процессов. До сих пор еще никем не изучались изменения, происходящие в спектре флуоресценции (или в спектре поглощения) хлорофилла во время фотосинтеза однако в будущем такого рода исследования могут также оказаться выполнимыми и весьма плодотворными. [c.216]

    В данном разделе мы рассмотрим обратимые изменения выхода флуоресценции, которые более или менее тесно связаны с фотосинтетической активностью и, повидимому, не связаны с существенными изменениями в структуре хлоропластина. [c.231]

    Около 30% света этих ламп в области X < 760 мц принадлежит к области 700—760 мц. Этот свет почти совсем не используется зелеными растениями, так что на долю фотосинтетически активной энергии в лампах средней мощности (100—200 вт) приходится только 7—8%, а в лампах большой мощности (500—1 000 вт) — 9—10%. Другими словами, освещенность в 1 лл от 100-ваттной лампы соответствует примерно 5,0 эрг/см сек, а такая же освещенность от 500-ваттной лампы — примерно 4,5 эрг/см сек фотосинтетически активного света. [c.247]

    Кислород, выделяющийся при фотосинтезе, может быть определен и измерен при помощи различных химических и физико-химических методов либо в жидкой фазе, содержащей водяные растения, либо в газообразной фазе. Вследствие малой растворимости кислорода в воде методы первого рода (например, потенциометрическое определение концентрации кислорода в растворе) пригодны для измерения только слабых эффектов, например для наблюдения фотосинтетической активности в первые минуты освещения (см. гл. XXXIII). [c.254]

    Следует заметить, что этот довод связан с допущением одинаковой фотосинтетической активности всех клеток как тех, которые в данный момент освещены, так и тех, которые находятся в темноте. Если только фактически освещаемые клетки (или клетки, находящиеся вне зоны освещения менее 0,01 сек.) могут заметным образом участвовать в фотосинтезе, то имеет значение лишь та часть светового фона, которая создает освещение этих самых клеток. Эта часть незначительна, если свет фона падает сверху и поглощается верхним слоем суспензии, тогда как измеренный пучок красного света поступает в сосуд снизу и поглощается тонким слоем суспензии у дна сосуда. Варбург и Бёрк [52, 53] описали единичный опыт, в котором световой фон подобно измеренному пучку света был направлен на сосуд снизу. Этот свет был достаточно интенсивен для приблизительно пятикратной компенсации дыхания тем не менее добавление измеренного пучка света приводило к приросту выделения кислорода, эквивалентному квантовому расходу 2,8. К сожалению, этот исключительно важный опыт был сделан с крайне неудовлетворительным графиком времени три 5-минутных цикла свет — темнота в одном сосуде, с последующими двумя 10-минутными циклами свет—темнота в другом сосуде. [c.542]

    Вопрос о том, как далеко простирается фотосинтетически активная область в ультрафиолетовую сторону спектра, не подвергался систематическому изучению путем измерений квантового выхода в монохроматическом свете, хотя, повидимому, считается, что выход быстро падает фиолетового конца видимого спектра (400 m i). [c.593]

    Уменьшение квантового выхода Ohlorella на синем и фиолетовом свету вряд ли вызывается присутствием какого-нибудь желтого пигмента, отличного от каротиноидов (сравнение спектров поглощения живых клеток и экстрагированных пигментов на фиг. 92 не дает указаний на присутствие такого пигмента). С другой стороны, у некоторых высших растений в клеточном соке или клеточных стенках часто присутствуют пигменты типа флавонов или антоцианинов, которые конкурируют с фотосинтетически активными пигментами в поглощении сине-фиолетовых квантов или даже служат в качестве цветных экранов , особенно если они располагаются в эпидермисе или в клеточных стенках между хлоропластами и внешним источником света. Присутствие этих пигментов не должно влиять на выход фотосинтеза при световом насыщении, но будет понижать квантовый выход в линейном участке и в области частичного насыщения. Бернс [54, 55, 100] сообщил, что квантовый выход фотосинтеза сеянцев сосны и ели в сине-фиолетовом свете (390—470 j/ji) был в 2 раза меньше, чем в красном (630—720 м ) или в красном плюс оранжевый (560—720 а). Это явление можно отнести за счет присутствия в этих хвойных деревьях какого-то неактивного желтого пигмента (в предыдущем разделе упоминалось, что фотосинтез в этих растениях снижается до нуля при к < 450 или 465 м ). [c.606]

    Ноак [41] в 1922 г. наблюдал фотохимическое превращение флавонов в антоцианины in vivo и интерпретировал эту реакцию как окисление — восстановление, сенсибилизированное хлорофиллом (см. гл. XIX, т. I). Он предположил, что флавоны и антоцианины образуют окислительно-восстановительную систему, которая может играть каталитическую роль в фотосинтезе. Сен [102] утверждал, что листья, содержащие антоцианин, имеют более высокую фотосинтетическую активность, чем обычные листья, несмотря на более низкое содержание хлорофилла. [c.607]


Смотреть страницы где упоминается термин Фотосинтетическая активность: [c.193]    [c.404]    [c.444]    [c.148]    [c.50]    [c.110]    [c.367]    [c.246]    [c.247]    [c.255]    [c.286]    [c.288]    [c.387]    [c.419]    [c.519]    [c.533]    [c.624]   
Смотреть главы в:

Биохимия и физиология иммунитета растений -> Фотосинтетическая активность


Фотосинтез 1951 (1951) -- [ c.110 ]




ПОИСК







© 2025 chem21.info Реклама на сайте