Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная связь и адсорбция

    Адсорбция ферментов на нерастворимых носителях. При адсорбционной иммобилизации белковая молекула удерживается на поверхности носителя за счет электростатических, гидрофобных, дисперсионных взаимодействий и водородных связей. Адсорбция была первым методом иммобилизации ферментов (Дж. Нельсон, [c.88]

    Вблизи переходного состояния любой химической реакции взаимодействие между реагирующими молекулами (в соответствующих случаях можно включить взаимодействие с катализатором и растворителем) должно составлять значительную величину, так что нельзя пренебрегать влиянием обмена электронами. Вся реагирующая система должна рассматриваться как существенно единая многоэлектронная система, подобно обычной молекуле. Соответственно в такой системе электроны при сближении реагирующих молекул будут перераспределяться, образуя новое распределение, которое отличается от распределения в изолированных реагирующих молекулах. Такой процесс делокализации электронов может иметь значение не только при образовании активированного комплекса в химических реакциях, но также и при образовании промежуточных продуктов реакций, молекулярных комплексов, сольватации, водородной связи, адсорбции и в других аналогичных проблемах. [c.73]


    Этот вид сил, называемых дисперсионными, играет большую роль в адсорбции. Диполь адсорбата может вызвать появление наведенного заряда в адсорбенте. Тогда между адсорбентом и адсорбатом начнут действовать индукционные силы. Возможно возникновение индукционных сил и за счет наведения заряда в адсорбирующихся молекулах теми зарядами, которые имеются на поверхности адсорбента. При наличии на поверхности адсорбента гидроксилов адсорбция таких веществ, как спирты, фенолы, в значительной степени обусловливается водородными связями. Адсорбция полярных молекул на адсорбентах, поверхность которых имеет постоянные заряды, связана с электростатическими ориентационными силами. [c.281]

    Силикагель можно использовать для адсорбции многих веществ. Его адсорбционная активность объясняется ненасыщенными водородными связями ОН-группы на поверхности структуры. При нагревании силикагель легко возвращает поглощенные вещества, восстанавливая при этом свои адсорбционные свойства. [c.89]

    Механизм такого процесса окисления можно представить схемой, приведенной на рис. 2.11. На стадии I происходит адсорбция молекулы кислорода на активном центре (обозначен звездочкой). Стадия II характеризуется превращением адсорбированной молекулы кислорода в поверхностный ион Ог и одновременным взаимодействием данной ячейки активатора с полярной молекулой углеводорода, дающего слабую водородную связь с поверхностью, в результате чего ослабляется связь водорода с углеводородным радикалом. На стадии III поверхностный ион кислорода соединяется с ядром водорода с разрывом связи Н—К. При этом образуются поверхностный комплекс [5 --ООН] и свободный радикал К, которые на стадии IV в [c.60]

    При адсорбции часто происходит образование водородной связи между молекулой адсорбата и соответствующими группами или ионами на поверхности адсорбента. Так, при адсорбции молекул воды, спиртов, эфиров, аминов и т. п. на адсорбентах, поверхность которых покрыта гидроксильными группами, например на силикагеле (высокополимерной кремнекислоте), в дополнение к неспецифическим дисперсионным, ориентационным и индукционным взаимодействиям происходит образование молекулярных комплексов с водородной связью. Такие более специфические взаимодействия проявляются также при адсорбции и других молекул с периферическим сосредоточением электронной плотности, например имеющих л-электронные связи, на поверхностях, [c.438]

    Водородная связь при адсорбции [c.496]

    Правило А. В. Думанского (Р/Л й 6050 Дж/моль) применимо лишь для тех веществ, с которыми молекулы воды взаимодействуют с помощью водородных связей (целлюлоза, крахмал, дегидратированный при 110°С палыгорскит). Если основными центрами адсорбции воды являются не гидроксильные группы или атомы кислорода, а обменные катионы (как в случае цеолитов, вермикулита и др.) или координационно ненасыщенные ионы (как в случае палыгорскита, дегидратированного при 180—250°С), то правило А. В. Думанского становится неприменимым [66]. [c.32]


    Напротив, все меры, ведущие к росту сил электростатического и структурного отталкивания, улучшают смачивание. Эта цель достигается приданием высокого и одинакового по знаку потенциала поверхностям пленки и (или) гидрофилизацией подложки, например путем увеличения числа центров, способных к образованию водородных связей с молекулами воды. При адсорбции неионогенных гидрофильных ПАВ или полимеров может проявиться дополнительно действие сил стерического отталкивания адсорбционных слоев. Понимание причин, управляющих смачиванием, позволяет в каждом конкретном случае выбирать оптимальные методы для решения практических задач. [c.218]

    Гидроксильные группы дают нестабильные соединения с олефинами за счет водородных связей [28]. В ИК-спектрах полосы поглощения при 3795, 3737 и 3698 см обусловлены валентными колебаниями гидроксильных групп. При адсорбции бутена-1 интенсивность всех полос уменьшается, однако после откачки бутена-1 все полосы восстанавливают свой контур. Это связывают с тем, что по мере удаления с поверхности окиси алюминия хемосорбирован-ной воды там образуются активные центры, представляющие собой напряженные связи А1—О—А1. При повышенных температурах соседние гидроксильные группы конденсируются с выделением воды и образованием в поверхностном слое ионов.кислорода и алюминия. При уменьшении содержания поверхностных гидроксильных групп ниже 30% от первоначального образовывались а) ионы алюминия, расположенные на поверхности рядом друг с другом, или [c.152]

    Твердые вещества, наиболее пригодные для адсорбции, отличаются высокой пористостью, имеют хорошо развитую поверхность с большой эффективной площадью. В качестве адсорбентов применяют такие материалы, как уголь, глинозем, силикагель. Некоторые свойства поверхности, например, расположение кристаллов или присутствие на поверхности атомов кислорода со свободной электронной парой, способной создавать водородные связи, обусловливают хемосорбцию определенных видов молекул. Точная природа этих свойств поверхности еще недостаточно ясна, поэтому необходимы дополнительные исследования, позволяющие создать матери- [c.156]

    В связи с кислыми свойствами гидратированной поверхности алюмосиликатов адсорбция нафтеновых кислот отбеливающими землями, как будет показано ниже, протекает не интенсивно. С другой стороны, фенолы хорошо извлекаются из масел при очистке последних алюмосиликатами. А. В. Киселев считает, что при адсорбции на силикагеле фенола донорно-акцепторное взаимодействие происходит как с ароматическим ядром, так и с кислородом фенольного гидроксила вследствие образования водородной связи между гидроксилами кремнекислоты (силикагеля) и молекулами фенола  [c.237]

    Селективность адсорбента определяется в первую очередь силами взаимодействия адсорбента с поверхностью адсорбента. Это могут быть дисперсионные силы, действующие при адсорбции на неполярных адсорбентах. При взаимодействии вещества с поверхностью полярных адсорбентов существенную роль может играть образование водородной связи или же другие типы полярных взаимодействий. [c.54]

    Существенное значение имеют специфические силы. К ним относятся водородные связи, играющие часто решающую роль в адсорбции и характеризующие специфичность адсорбента. Так, если по- [c.69]

    Селективность адсорбента определяется в первую очередь силами взаимодействия адсорбата с поверхностью адсорбента. Это могут быть дисперсионные силы, действующие при адсорбции на неполярных адсорбентах. При взаимодействии вещества с поверхностью полярных адсорбентов существенную роль может играть образование водородной связи или же другие типы полярных взаимодействий. Поэтому рассмотренные выше зависимости сорбционных характеристик для неподвижных жидких фаз остаются в основном справедливыми и для адсорбентов. [c.75]

    При адсорбции на адсорбентах, содержащих на поверхности гидроксильные группы, возникает ассоциация молекул адсорбата, вызванная образованием водородной связи. В этом случае общая энергия взаимодействия адсорбата с адсорбентом увеличивается. В результате теплота адсорбции веществ, образующих водородную связь с адсорбентом, оказывается больше теплоты адсорбции веществ, сходных по геометрической форме и близких по величине энергии дисперсионного притяжения, но не образующих водородной связи. [c.107]

    Возможность возникновения специфической адсорбции зависит от размера и степени гидратации иона. Например, ион фтора удерживается водородными связями и это мешает ему выйти из объема раствора на поверхность электрода. [c.128]

    Одним из важных практических выводов при рассмотрении природы адсорбционного взаимодейств1[я является вывод о значительно лучшей адсорбции веществ в трещинах и порах, когда проявляется преимущественно дисперсионное взаимодействие, так как вблизи адсорбированной молекулы находится большее число атомов твердого тела. Если же в адсорбционном взаимодействии значителен электростатический вклад, то в щелях и порах положительные и отрицательные заряды компенсируют друг друга и наибольший потенциал оказывается на выступах, где и будет преобладать адсорбция, особенно при образовангш водородных связей (адсорбция воды, метилового спирта и др.). Кроме того, из уравнений (И1.6) и (III. 7) следует, что чем большее число атомов имеет молекула адсорбата, тем с большей энергией она будет притягиваться к адсорбенту. [c.111]


    Адсорбция ухудшается при увеличении в молекулах числа гидроксильных групп, обладающих большой энергией гидратации за счет водородных связей. Адсорбцию ухудшает также наличие электрического зааряда, ориентирующего вокруг себя диполи воды. Поэтому диосоциирова нные на ионы молекулы сорбируются значительно хуже, чем недиссоциированные молекулы тех же веществ. [c.389]

    Движение электронов в молекулах обусловливает постоянное колебание электронной плотности и вызывает возникновение электрической асимметрии. В молекулах появляются колеблющиеся диполи или даже более сложные распределения зарядов, причем, как можно показать, сближение таких молекул приводит к взаимному иритялсению. Этот вид сил, называемых дисперсионными, играет большую роль в адсорбции. Диполь адсорбата может вызвать появление наведенного заряда в адсорбенте. Тогда гежду адсорбентом и адсорбатом начнут действовать индукционные силы. Возможно возникновение индукционных сил и за счет наведения заряда и адсорбирующихся молекулах теми зарядами, которые имеются на поверхности адсорбента. При наличии на поверхности адсорбента групп ОН адсорбция таких веществ, как спирты, фенолы, в значительной степени обусловливаетсл водородными связями. Адсорбция полярных молекул на адсорбентах, поверхность которых имеет постоянные заряды, связана с электростатическими ориентационными силами. [c.268]

    Причиной молекулярной ассоциации в водных растворах и многих жидкостях часто является возникновение водородной связи между соприкасающимися полярными частями молекул, содержащих, например, гидроксильные группы (см. стр. 164). Такая ассоциация проявляется также и при адсорбции на адсорбентах, содержащих на поверхности гидроксильные группы, например при адсорбции воды, спиртов, аммиака, аминов и т. п. на поверхностях гидроокисей, т. е. на гидроксплированных поверхностях силикагелей, алюмогелен, алюмосил икатных катализаторов и т. п. адсорбентов. Поверхность силикагеля покрыта гидроксильными группами, связанными с атомами кремния кремнекислородного остова. Вследствие того что электронная -оболочка атома кремния не заполнена, распределение электронной плотности в гидроксильных группах поверхности кремнезема таково, что отрицательный заряд сильно смеш.ен к атому кислорода, так что образуется диполь с центром положительного заряда у атома водорода, размеры которого невелики. Часто молекулы адсорбата, обладающие резко смеш,енной к периферии электронной плотностью или неподеленными электронными парами (например, атомы кислорода в молекулах воды, спиртов или эфиров), образуют дополнительно к рассмотренным выше взаимодействиям водородные [c.496]

    При водородной связи общая энергия взаимодействия адсорбата с адсорбентом увеличивается, поэтому теплота адсорбции веществ, образующих водородную связь с гидроксильными группами поверхности адсорбента, будет больше, чем теплота адсорбции веществ, сходных по геометрической форме и близких по величине энергии дисперсионного притяжения, но не образующих водородной связи. Например, теплоты адсорбции эфира и н-пен-тана на неполярной поверхности графитированной сажи близки (рис. ХУП1, 6а). На гидроксилированной поверхности кремнезема (рис. ХУП1, 66) теплота адсорбции этилового эфира (дает водородную связь) много больше теплоты адсорбции н-пентана (не дает водородной связи). Если поверхность кремнезема дегидро- [c.497]

    В случае, например, молекулы этилена или бензола оси электронных облаков, образующих л-связи, расположены перпендикулярно плоскости двойной связи в этилене или плоскому кольцу атомов углерода в бензоле. При адсорбции этилена и бензола их молекулы располагаются на поверхности плоско. Если поверхность адсорбента обладает гидроксильными группами (поверхность силикагеля, алюмосилнкагеля или гидроокиси магния) или выдвинутыми катионами (поверхность каналов цеолита), то на близких расстояниях возникает специфическое взаимодействие между этими гидроксильными группами или катионами и тс-электронами этилена или бензола, которое в известной степени Аналогично водородной связи  [c.499]

    Ранее было отмечено (стр. 498, 500), что разность теплот адсорбции ДQд молекул (не образующих взаимных водородных связей) на гидроксилированной и дегидроксилированной поверхности кремнезема дает энергию специфических взаимодействий этих молекул с гидроксильными группами поверхности. Из рнс. ХУП1, 12 следует, что смещение частоты Ду валентных колебаний гидроксильных групп повер ности кремнезема приблизительно пропорционально энергии Д(3д соответствующих специфических взаимодействий. [c.505]

    В результате проведенного выше анализа данных по плотности прочно связанной воды можно сделать вывод, что высокая энергия взаимодействия ее молекул с активными центрами гидрофильной поверхности и, как следствие, друг с другом еще не предопределяет повышенной по сравнению с объемной плотности связанной воды. Поверхность навязывает адсорбционным слоям структуру, зависящую от топографии и природы активных центров, т. е. в определенном смысле оказывает разу-порядочивающее действие на связываемую воду. Конечно, подвижность адсорбированных на гидрофильных поверхностях молекул воды, как это следует из анализа изменений энтропии при адсорбции [85] и данных ЯМР (см., например, [86]), намного ниже, чем в жидкой воде. Но приспособление адсорбционного водного слоя к топографии активных центров приводит к нарушению в нем целостности сетки межмолекулярных водородных связей в ИК-спектрах сорбированной воды полосы валентных колебаний слабо нагруженных ОН-групп воды существенно выше, чем в жидкой воде [66]. [c.35]

    Для силикатных пород нет точной информации о снижении о под действием воды. Обзор сведений по кварцу содержится в книге [257] и в работе [258], из которых видно, насколько велик разброс литературных данных. Однако можно считать, что свободная энергия негидратированной силоксановой поверхности кварца, обнажающейся при образовании ступеньки, вряд ли успевает сильно снизиться при физической адсорбции воды или при смачивании, а термоактивируемая химическая модификация поверхности с образованием силанольных связей требует большего времени. В то же время известно, что движение дислокаций в кварце может значительно облегчаться под действием воды. По схеме, разработанной Григгсом [259], в результате диффузии воды вдоль дислокаций образуются силанольные мостики =51—ОН. .. НО—51 =, которые легко рвутся в самом слабом месте (по водородной связи). Сопротивление движению дислокаций уменьшается, и поэтому диффузия ОН-групп (или, возможно, ионов Н+ или НзО+) контролирует подвижность дислокаций и, следовательно, скорость деформации. По сути, здесь мы имеем дело с явлением, близким к адсорбционному пластифицированию, только облегчение разрыва межатомных связей происходит в другом координационном окружении — не на поверхности, а в объеме. По-видимому, такой механизм возможен и в случае многих других силикатных минералов (оливин [260] и др.). [c.89]

    Согласно Пешли, гидратные (точнее, структурные) силы могут возникать как на гидрофильных поверхностях с гидратированными полярными или ионными группами, так и на поверхностях, которые вначале не являются гидрофильными, но могут изменяться при адсорбции гидратированных форм и вести себя как гидрофильные ( вторичная гидратация ) [121]. В основе теории гидратных сил лежит положение о поверхностной адсорбции гидратированных ионов. Анализ явления показывает, что действие гидратных сил определяется не только плотностью адсорбированных катионов, но и изменением свободной энергии, связанным с замещением катионом иона Н3О+. Силы гидратации проявляются в достаточно концентрированных растворах (более 10 моль/л), и их величина определяется положением ионов в лиотропном ряду. Этот механизм, согласно которому взаимодействие гидратированных катионов приводит к возникновению сил отталкивания между поверхностями с достаточно высокой плотностью поверхностного заряда и слабой способностью к образованию водородных связей, может объяснить высокие пороговые концентрации, необходимые для коагуляции амфотерных частиц латекса полистирола [501] и золя SIO2 [502]. [c.173]

    Теория БЭТ несмотря на условность предпосылок позволила вывести уравнение изотермы адсорбции, имеющей S-образную форму. Вид этой изотермы характерен для полимолекулярной адсорбции. При значениях давления, далеких от давления насыщенного пара при данной температуре, и значении константы равновесия полимолекулярной адсорбции С>1 уравнение S-образной изотермы переходит в уравнение изотермы адсорбции Лангмюра. Таким образом, адсорбция в каждом слое подчиняется уравнению Лангмюра. Существует пять основных типов изотермы адсорбции (рис. 109). Изотермы типа I характерны для микропористых адсорбентов выпуклые участки на изотермах типов И и IV свидетельствуют о присутствии в адсорбенте наряду с макропорами и микропор. Менее крутой начальный подъем кривых адсорбции может быть связан с наличием моно- и полимолекулярной адсорбции для адсорбента переходнопористого типа. Начальные вогнутые участки изотерм типов И1 и V характерны для систем адсорбент — адсорбат, когда взаимодействие их молекул значительно меньше межмолекулярного взаимодействия молекул адсорбата, вызванного, например, появлением водородных связей. Теория БЭТ является наиболее полной тео(рией физической адсорбции. [c.257]

    Адсорбция на ровной поверхности зависит в основном от природы адсорбента и адсорбата, ет их взаимного сродства. Необло-димо различать влияние этих факторов на величину адсорбции. 4 и на константу адсорбционного равновесия К- Чем сильнее взаимодействие адсорбент — адсорбат, тем больше К и тем большая величина мономолекулярной адсорбции А достигается при тех >i e равновесных давлениях 1глн концентрациях. Обычно считают, что сродство адсорбента к адсорбату (илп К) тем сильнее, чем больЛс-нх склонность к образованию связей одной природы, нанример, к дисперсионному взаимодействию, нли к диполь-динольному, или к образованию водородных связей, или к сильным химическим взаимодействиям. [c.124]

    Приведенный рисунок дает основание утверждать, что теплота, наблюдаемая при смачивании, образуется исключительно благодаря а-фазной воде. Адсорбция б-фазной воды приводит к разрушению двух водородных связей и образованию двух новых связей — по одной для каждой молекулы связанной воды. Следовательно, в конечном итоге должен быть получен нулевой результат. Спикмэн установил, что такое предположение полностью отвечает действительности. Отношение а-фазной воды к теплоте, образующейся при смачивании шерсти, является во всех случаях линейным. [c.219]

    Образование водородной связи наиболее характерно для адсорбентов тина гидроксилированных силикагелей, алюмогелей, алюмосиликатных катализаторов и т. п. На поверхности этого рода адсорбентов легко адсорбируются вещества, способные к образованию водородных связей, такие как вода, спирты, аммиак, амины и др. Например, при адсорбции этих веществ на гидроксилированной поверхности кремнезема водородные связи могут образовываться по нижеследующим схемаци [c.107]

    Различают физическую адсорбцию, происходящую за счет дисперсионных (ван-дер-ваальсовых) взаимодействий молек ул адсор-бата с адсорбентом, образования водородных связей и других сил электростатического характера, и химическую адсорбцию (хемосорбцию), происходящую за счет образования химических связей между адсорбатом и адсорбентом. Для физической адсорбции характерны теплоты адсорбции -2 -5 кДж/моль, для химической адсорбции значения теплот обычно превышают 10 кДж/моль. Химическая адсорбция может сопровождаться диссоциацией молекул адсорбата и другими его химическими превращениями. [c.281]


Смотреть страницы где упоминается термин Водородная связь и адсорбция: [c.115]    [c.108]    [c.201]    [c.303]    [c.455]    [c.497]    [c.498]    [c.501]    [c.505]    [c.154]    [c.154]    [c.236]    [c.58]    [c.600]    [c.37]    [c.15]   
Курс коллоидной химии (1976) -- [ c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция иа кремнеземе образование водородных связей

Водородные связи

Гидроксильные группы образование водородной связи при адсорбции ароматических

Связи водородные образование при адсорбции

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте