Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активные центры и их природа

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]


    Достаточно обоснованно можно считать, что поверхность твердых катализаторов неоднородна по своей активности. Лучшим показателем неоднородности служит часто наблюдаемое отравление твердых катализаторов малыми количествами ядов, достаточными для покрытия лишь части их общей поверхности. Это явление может получить правдоподобное объяснение, если предположить, что только часть поверхности катализатора обладает каталитической активностью. Соответствующие активные участки называют активными центрами природа этих центров все еще является объектом дискуссий и различных догадок. [c.8]

    В комплексных катализаторах часто сосуществует несколько типов активных центров, каждый из которых характеризуется набором констант скоростей элементарных реакций. Кинетические брутто-эффекты не позволяют выделить вклад каждого из них, что может быть причиной заметного отклонения средних значений констант скоростей от истинного значения. Сосуществование различных по кинетическим свойствам активных центров в системах связано, в первую очередь, с валентным состоянием переходного металла в активном центре, природой лигандов в центрах роста (сокатализатор, модификатор, примесь), энергетической неоднородностью поверх ности и т. п. [c.158]

    Характер активных центров на поверхности металла зависит от его химической природы, способа обработки и чистоты. Необходимо подчеркнуть, что химический состав поверхности играет существенную роль в протекании поверхностных процессов, и при рассмотрении конкретных вопросов химмотологии в области поверхностных явлений следует вносить поправки на особенности химического строения адсорбента. Химическое строение металла подробно рассматривается металловедением [203]. Поверхность металлических деталей представляет собой комбинацию полярных активных участков и олеофильных участков, природа которых определяется в основном дисперсионными силами. Адсорбция молекул некоторых углеводородов, индуцирующих на металле большие дипольные моменты, может способствовать превращению поверхности из неполярной в полярную [204]. [c.181]

    Из приведенного краткого образца видно, что применение метода ЭПР к проблемам, связанным с гетерогенным катализом, находится лишь в самом начале своего развития. Большинство работ посвящено изучению структуры катализаторов, в то время как с точки зрения общих представлений о механизме катализа гораздо больший интерес представляет изучение хемосорбции на парамагнитных активных центрах, природы образующейся при этом химической связи и промежуточных активных веществ в ходе каталитического процесса. Большой интерес представляет также намечаю-. щаяся связь каталитической активности с обменными эффектами, которая может быть подробно исследована методом ЭПР. Наиболее четко эта связь прослежена до настоящего времени в случае геля окиси хрома. Если эти наблюдения будут подтверждены на других системах и если удастся показать, что такая взаимосвязь действительно является существенной в сколько-нибудь значительном числе известных каталитических процессов, то откроются совершенно новые возможности подхода к анализу механизма каталитического действия с учетом возможных эффектов дальнодействия в многоэлектронных системах реагенты — катализатор . Дальнейшее развитие этих идей без дополнительных экспериментальных данных в настоящее время вряд ли можно считать целесообразным. Ясно только, что проведение систематических исследований по выяснению при помощи метода ЭПР влияния способов приготовления и тренировки катализаторов, адсорбции различных газов на них, разнообразных методов активации и промотирования и, наконец, самих каталитических процессов на электронные характеристики атомов, входящих в состав этих катализаторов, смогут помочь решению ряда проблем, связанных с этой интереснейшей областью современной химии. [c.212]


    Есть также данные о кинетике полимеризации систем, содержащих изобутилен и пропилен [49]. В последнем случае для объяснения довольно сложной кинетики реакции [102] была принята особая природа активного центра как комплекса пары ионов. [c.158]

    Хотя уже говорилось о том, что поверхность катализатора служит местом протекания каталитической реакции, из этого не следует, что именно так обстоит дело во всех случаях. Большинство кристаллических тел имеет поликристаллическую структуру, и на поверхности между микрокристаллами есть множество активных центров для протекания каталитической реакции. Аморфные вещества, такие, как окиси и гидроокиси многих металлов, могут иметь поры, молекулярные трещины и неправильные поверхности, доступность которых для химической реакции сильно зависит от природы реагирующих веществ и от условий эксперимента. Газообразные вещества (Нз, Н2О, СО, СО2, N0 и многие другие) могут сильно сорбироваться на таких твердых телах , как стекло, кварц и металлы. Количество газа, которое монгет быть десорбировано откачиванием стеклянной или [c.532]

    Можно думать, что гидрогенолиз по дублетной и по секстетно-дублетной схемам протекает на поверхности металлических катализаторов на разных активных центрах. Поскольку энергия активации для первой схемы много ниже, чем для второй, реакция идет преимущественно по дублетной схеме, если только на катализаторе имеются соответствующие центры (Ru, Rh и др.) На Pt/ их, по-видимому, нет и потому гидрогенолиз на этом катализаторе может проходить лишь по секстетно-дублетному механизму. Вопрос о геометрии активных центров секстетно-дублетного типа уже обсуждался выше, природа дублетных активных центров пока не детализирована. [c.171]

    Скорость окисления зависит от корня квадратного скорости инициирования вследствие бимолекулярной природы реакции обрыва. Реакция обрыва выражается в основном реакцией (6), в то время как реакции (4) и (5) значения не имеют. В стадии развития скорость определяется не реакцией (2) R + Оа, а скорее реакцией (3), / 00 -Ь / Н определяет время каждого цикла. Из носителей цепи (активных центров) в сравнительно высокой концентрации (обусловленной факторами стабильности, как указано Б табл. 2) присутствует радикал ROO , и поэтому уравнения скорости для стадий развития и обрыва цепи зависят от концентрации данного промежуточного продукта. [c.289]

    Работа публиковалась в ряде статей и хотя природа полученного продукта реакции указывает на то, что процесс скорее имеет ионный, чем радикальный характер, детали его все еще довольно неясны. Как подчеркивают авторы, открывшие этот процесс [112], специфичность катализатора и гетерогенный характер реакции указывают на то, что происходит какой-то процесс с ионными парами, в котором большое значение Для определения скорости и направления полимеризации играет природа иона, связанного с активным центром. [c.161]

    Рост цепи — это результат последовательных реакций присоединения сомономеров к активному центру. Считают, что скорость вхождения мономерной единицы в растущую цепь зависит как от химической природы мономера, так и от активности центра роста. Хотя возможно рассмотрение скорости роста на нескольких центрах, отличающихся по активности, а также влияния асимметрии реагирующих мономеров [17], однако для упрощения допускается, что активность центра роста не меняется во времени и зависит лишь от последнего звена. Учитывая эти допущения, стадия роста цепи при двойной сополимеризации будет включать четыре реакции, а при тройной — девять [18, с. 11—63]. Для обрыва растущей цепи наибольшее значение имеет дезактивация активного центра во времени — старение. Ряд исследователей считают, что старение — это бимолекулярный процесс, протекающий по реакции второго порядка, другие относят е о к реакциям первого порядка [16, 19]. Это связано, по-видимому, с различием исследованных каталитических систем, когда кажущееся изменение порядка реакции объясняется наличием нескольких видов активных центров. [c.298]

    Большинство исследователей считают, что относительные активности этилена и пропилена в присутствии третьего мономера не меняются. Как уже отмечалось выше, в ряде случаев все же взаимодействие активного центра с диеном приводит к изменению его природы, что, естественно, изменяет скорость вхождения этилена и пропилена в полимерную цепь [19]. Степень этих изменений зависит как от концентрации диена, так и от его реакционной способности [22]. [c.300]

    ММР сополимеров зависит от природы каталитической системы, растворителя, температуры полимеризации, концентрации катализатора, регулятора молекулярной массы и др. Сополимеры со сравнительно узким ММР можно получить на гомогенных катализаторах. На катализаторах, содержащих два или несколько активных центров с разной продолжительностью жизни или разной активностью, образуются сополимеры с более широким или [c.304]


    Квантовохимические исследования каталитических реакций в настоящее время не выходят за рамки простейших кластерных моделей, при этом активный центр моделируется одним-двумя атомами катализатора [16]. Применение подобных моделей особенно перспективно в случаях, когда объектом исследования является механизм каталитических реакций, однако неполноценное представительство в этих моделях самого катализатора как твердого тела снижает эффективность решения задач прогнозирования. В рамках данного подхода удается дифференцировать катализаторы весьма примитивным способом. По существу, катализатор характеризуется природой атома, выступающего в качестве адсорбционного центра. Качественные закономерности, выявление которых является предметом подобных исследований, иногда нужно установить, не проводя никаких расчетов. Таким образом, чрезмерное упрощение модели обесценивает квантовохимический прогноз, а ее усложнение и попытки адекватно передать твердотельные характеристики катализатора связаны с резким возрастанием вычислительных трудностей, и, следовательно, невозможностью изучать представляющие практический интерес сложные объекты. [c.62]

    Исследование природы активных центров поликатионных форм цеолитов типа фожазита  [c.318]

    Кобозев Н. И. Природа активных центров в гетерогенном катализе/ i Современные проблемы физической химии. М. Изд-во МГУ, 1968. Т. 3. С. 17—51. (Учен. зап. МГУ Вып. 174). [c.349]

    В этой главе собраны работы, посвященные исследованию физических свойств воды в различных модельных и природных дисперсных системах, а также вблизи активных групп макромолекул и биополимеров. Сопоставление данных, полученных разными методами и для разных объектов, приводит к общему выводу об отличиях свойств воды в граничных слоях от ее свойств в объеме. Характер этих изменений существенным образом зависит от природы воздействующих на воду групп и поверхностей. Наиболее сильное влияние на структуру воды оказывают заряженные центры и полярные группы, способные к образованию водородных связей с молекулами воды. При этом оказываются важными эпитаксиальные эффекты — число и характер расположения активных центров на твердой поверхности. [c.6]

    Обычно наблюдаемая степень удаления арота не превышает 30%, даже при высоких показателях по удалению серы. Прямая деструкция азотсодержащих соединений невозможна из-за высокой термической стабильности. Энергия разрыва связи С-КНг составляет 335,2 Дж/моль, т. е. практически равна энергии разрьта связи С-С. Удаление азота обязательно должно включать стадию насыщения кольца [36,40]. В результате расход водорода высок — 6-7 моль водорода на моль аммиака [37]. Для ускорения реакции деазотирования в катализаторе необходимы обе функции - гидрирования и гидрообессеривания [47], но они сильно зависят от типа соединений. Азотсодержащие соединения оказывают ингибирующее влияние на активные центры катализаторов гидрообессеривания, природа которых пока полностью не выяснена. В целом гидродеазотирование гетероциклических соединений азота изучено хуже, чем гидрообессеривание. Ясно, однако, что тип связи азота, так же как и связи серы, играет большую роль и определяет скорость деструктивного гидрирования азотсодержащих соединений. Например, алифатические амины значительно более реакционноспособны, чем ароматические. [c.56]

    Здесь I обозначает активный центр. Такое представление справедливо в тех случаях, когда десорбируется то же вещество, которое было адсорбировано, т. е. когда химическая природа вещества в результате адсорбции не меняется. Если это не так, то адсорбент является катализатором. [c.111]

    Все это обусловливает неоднозначность формулировок кинетических уравнений, описывающих течение каталитических процессов при заданных условиях. Обычно предполагается, что реакция происходит только на отдельных местах поверхности катализатора, так называемых центрах, или активных центрах. Центры, активные в одной реакции, могут не проявлять активности в другой. Обычно центры трудно идентифицировать п точно соотнести с определенными элементами структуры. Центрами могут служить группы илп кластеры соседних атомов, расположенные на поверхности катализатора, пли же частицы, адсорбированные на поверхности. Во время реакцпп катализатор часто подвергается перестройке, вызывающей изменение природы и общей величины поверхности. При этом может меняться число активных центров. [c.13]

    Вопрос о природе (строении) активных центров находится в стадии изучения и является предметом научных дискуссий. Единой теории катализа, а поэтому и критерия подбора гетерогенных катализаторов, нет. Все же в представлениях о механизме катализа [c.226]

    При образовании ФСК малая молекула субстрата стехиомет-рически связывается с большой молекулой фермента. Очевидно, субстрат непосредственно взаимодействует с определенным малым участком молекулы фермента — с ее активным центром. Природа активного центра, т. е. совокупность и расположение аминокислотных остатков, а также кофакторов (см. стр. 94), входящих в его состав, устанавливается посредством химических и физических исследований. Изменения активности, возникающие в результате химической модификации белка, позволяют выявить функциональные группы активного центра. Сведения [c.374]

    Согласно хорошо известным принципам действия катализатора, при столкновении молекулы углеводорода с активным центром катализатора могут образоваться нестойкие соединения, от природы и реакционной способности которых зависят состав конечных продуктов и скорость реакции. Но идентификация и изучение таких образований является очень трудной задачей, особенно в случае гетерогенного катализа, когда эти промежуточные продукты неразрывно связаны с основной массой твердого тела. [c.14]

    Природа активных центров окиси алюминия. Поскольку окись алюминия активирует скелетную изомеризацию (что обычно связывают с кислотными свойствами АЬОз), были исследованы кислотные свойства ее поверхности. При этом было показано, что чистая АЬОз, полученная из изопропилата алюминия или действием аммиака на нитрат алюминия и прокаленная при 600— [c.151]

    Природа активных центров алюмосиликата, ответственных за структурную изомеризацию олефинов. В большом числе исследований (например, [55]) установлена связь каталитической активности алюмосиликатов с числом и силой кислотных центров на их поверхности. В табл. 52 представлены кислотные свойства алюмо-силикатных катализаторов, приготовленных путем постепенного отравления катализатора пиридином и различающихся силой кислотных центров. Из табл. 52 ясно, что только сильнокислотные [c.164]

    Осушка газа твердыми поглотителями основана на явлении адсорбции — концентрирования одного из компонентов паровой или жидкой фазы на поверхности твердого вещества (адсорбента). Природа сил, удерживающих эти компоненты на поверхности адсорбента, полностью не выяснена. Предложено много теорий, объясняющих это явление. Согласно теории Лэнгмюра, на поверхлости твердых адсорбентов имеются участки со свободными остаточными валентностями. Когда адсорбируемая молекула из газовой фазы попадает на незанятый активный центр поверхности, молекула не отталкивается в газовую фазу, а остается связанной с поверхностью. В начальный момент адсорбции существует весьма большое число активных центров и число молекул, связанных поверхностью, превышает число молекул, отрывающихся от нее. По мере покрытия всей поверхности вероятность попадания молекул газа на незанятый активный центр уменьшается, наступает состояние равновесия, при котором скорость адсорбции и десорбции выравнивается. В соответствии с теорией Лэнгмюра, адсорбированное вещество удерживается на поверхности адсорбента в виде пленки мономолекулярно11 толщины. Допускается вместе с тем, что силовые поля адсорбированных молекул могут претерпеть такие изменения, что они будут спо-собн1.[ притягивать к себе второй такой слой, третий и т. д. С повышением давления и понижением температуры количество адсорбированного вещества увеличивается. [c.158]

    Сформулированные положения стимулировали постановку дальнейших работ с целью изучения возможности замены существующего промьппленного способа получения высокооктановых компонентов бензинов (изооктана) путем алкилировании изобутана бутиленами, в котором в качестве катализаторов используются серная и фтористоводородная кислоты. Совместно с К. И. Патриляком исследованы особенности процесса алкилирования изобутана бутиленами на поликатионно-декатионированном цеолите типа X. Установлено существование периода разработки катализатора, зависимости протекания процесса от условий активации катализатора, пульсирующего характера процесса в отдельных зонах катализатора по высоте слоя, неодинаковой алкилирующей способности бутиленов, изомеризации бутилена-1 в бутилен-2. Развиты теоретические представления о природе активных центров Льюиса и связанных с ними физико-химических свойствах поликатиопно-декатионированных цеолитов типа X и . Эти работы послужили научной основой получении ияооктана алкилированием изобутапа бутиленами в присутствии цеолитных катализаторов. Промышленная реализация процесса позволит перевести алкилирование в число процессов с безотходной технологией. [c.15]

    Инициаторы полимеризации. Инициирование цепей является одним из наиболее сложных вопросов в свободно-радикальной полимеризации, поскольку практически все известные способы получения свободных радикалов тем или иным путем могут быть использованы для этой цели. Это чрезвычайно важно, так как успех любой реакции полимеризации зависит от постоянной и подходящей скорости получения активных центров. Некоторые мономеры, особенно стирол (и, по-видимому, стиролы с замещениями в кольце), подвергаются некатализируемо11 реакции полимеризации при нагревании без добавления инициаторов. Эта термическая реакция была исчерпывающе изучена [22]. Однако точно природа реального процесса инициирования все еще не известна. С энергетической и кинетической точек зрения процесс является, по крайней мере, бимолекулярным [46] большинство исследователей постулирует образование из мономера в результате бимолекулярной реакции дирадикала молекулы мономера соединяются по принципу хвост к хвосту , как указано ниже, [c.133]

    Изменение природы хлорагента практически не влияло на содержание хлора в образцах катализатора это приводит к заключению, что в состав активных центров поверхности оксида алюминия, ответственных за реакцию изомеризации, входит лишь небольшая частьот обшего содержания хлора в катализаторе. Суммарный баланс хлорирования указьшает на замену ионов кислорода поверхности оксида алюминия ионами хлора. Эта реакция является основной при хлорировании. Определяющее влияние природы хлорорганического соединения на активность катализатора в реакции изомеризации может быть объяснено необходимостью фиксации двух ионов хлора на поверхности оксида алюминия на определенном расстоянии друг от друга. [c.69]

    До недавнего времени, ввиду йт yt tвий прямых экспериментальных данных о природе и строении активных центров, не было четких представлений о механизме действия литийорганических инициаторов. Этому в значительной мере также препятствовала большая сложность изучаемых систем, связанная в первую очередь с ассоциацией литийорганических соединений и растущих полимерных цепей. Рассмотренные различными авторами механизмы анионной полимеризации диенов в большей или меньшей степени объясняли только кинетические закономерности процесса, не давая каких-либо приемлемых представлений об элементарных актах формирования звеньев полимерной цепи [87]. [c.128]

    Анионная полимеризация. Структура активного центра при полимеризации этого типа существенно зависит от природы металла ( противоиона ) и среды, в которой протекает процесс, и может меняться от слабополяризованной связи металл — углерод до состояния практически свободных ионов  [c.178]

    Эта зависимость тем более удивительна, что, казалось бы, никакой связи между величинами С и быть не должно. Ведь Е связано с энергетической природой активного центра, а С, с точностью до множителя пропорциональности, есть число активных центров на единице поверхности катализатора. До сих пор не дано полного теоретического обоснования этой интересной опытной закономерности . Пожалуй, наиболее правдоподобно звучит объяснение, данное Швабом на основании теории активных центров. Если катализ осуществляют только определенные активные центры, обладающие различным энергетическим потенциалом (т. е. катализ идет на наборе активных центров с разными энергиями активации на них), то по статистически-термо-дннамическим соображениям число их должно увеличиваться с уменьшением энергетического потенциала. На поверхности катализатора, обладающего по условиям приготовления центрами высокой активности, только эти центры и будут участвовать в процессе на поверхности же катализатора, пе имеющего центров высокой активности, катализ поведут менее активные, но более многочисленные центры. Следовательно, чем больше величина Е для данного катализатора из серии катализаторов с разной активностью центров, тем большего значения С следует ожидать. Поскольку между числом центров и их энергий наиболее вероятна экспоненциальная зависимость, качественно объяснимо и эмпирическое уравнение (XIII, 6). [c.336]

    Вне зависимости от существующих взглядов на природу и структуру активных участков каталитически действующей иоверхности контакта (будь то активные центры, по Тэйлору, места нарушения кристаллической структуры, по Смекалю, активные линии — ребра и границы кристаллов, но Швабу и Питчу, углы ионных решеток, по Странскому), как бы мы пи представляли себе строение каталитической поверхности, необходимо также иметь в виду и пространственную конфигурацию молекул, чтобы получить представление [c.52]

    Позиция Г. А. Ола основывается на представлении о так называемых суперкислотах, или сверхкислотах, сложной природы. Сунеркислотиый центр включает как центр Бренстеда, так и льюисовский кислотный центр, причем кислотность Льюиса усиливает бренстедовскую кислотность 181. С этой точки зрения и(шлгкатионно-декатионированные формы цеолитов, обладающие бренстедовосой и льюисовской кислотностью, также можно рассматривать как суперкислоты. Наличие кислоты Льюиса в структуре активного центра позволяет по новому подойти к вопросу гидридного переноса при алкилировании. [c.347]

    Характерно, что после обработки паром активность алюмомагнийсиликатных катализаторов значительно возрастает, причем наибольшее возрастание наблюдается у катализаторов, прошедших стадию синерезиса при 25—30° С, а наименьшее — у катализаторов, прошедших синерезис при 65° С. При обработке паром химическая природа алюмомагнийсиликатных соединений не изменяется. Увеличение же удельной активности после такой обработки объясняется повышением числа активных центров на единице поверхности катализатора (в результате сокращения поверхности за счет сжатия неактивных участков). При этом общая поверхность катализатора сокращается в большей степени, чем увеличивается удельная активность. [c.95]

    Синтетические цеолиты как катализаторы начали изучать сравнительно недавно, и пока неясна природа их каталитической активности. Известно, что каталитически малоактивными или неактивными являются цеолиты, содержащие одновалентные ионы металлов. При замене же их на двухвалентные каталитическая активность возрастает, меняются некоторые структурные характеристики.цеолита. Каталитическая активность цеолитов типа резко возрастает с увеличением соотношения 3102 А12О3 — изменение соотношения атомов кремния и алюминия в решетке цеолита влияет на свойства каталитически активных центров. [c.99]

    В результате проведенного выше анализа данных по плотности прочно связанной воды можно сделать вывод, что высокая энергия взаимодействия ее молекул с активными центрами гидрофильной поверхности и, как следствие, друг с другом еще не предопределяет повышенной по сравнению с объемной плотности связанной воды. Поверхность навязывает адсорбционным слоям структуру, зависящую от топографии и природы активных центров, т. е. в определенном смысле оказывает разу-порядочивающее действие на связываемую воду. Конечно, подвижность адсорбированных на гидрофильных поверхностях молекул воды, как это следует из анализа изменений энтропии при адсорбции [85] и данных ЯМР (см., например, [86]), намного ниже, чем в жидкой воде. Но приспособление адсорбционного водного слоя к топографии активных центров приводит к нарушению в нем целостности сетки межмолекулярных водородных связей в ИК-спектрах сорбированной воды полосы валентных колебаний слабо нагруженных ОН-групп воды существенно выше, чем в жидкой воде [66]. [c.35]

    Возникает проблема приготовления столь мелкокристаллических (фактически докристаллических) катализаторов, чтобы они позволяли извлекать максимум информации о природе, составе и строении активных центров в то же время не обладали излишне большой энтропией информации. Наиболее перспективными с этой точки зрения являются адсорбционные нанесенные катализаторы с очень малыми заполнениями поверхности атомами активного веш,ества (степени заполнения а = 0,001—0,01). Рассмотрение свойств таких катализаторов лежит в основе теории активных ансамблей Кобозева [89]. [c.104]

    Изменение порядка реакции по коксу в процессе регенерации образцов цеолитов типа СаХ наблюдали В. С. Гутыря и соавторы [119] и предположили, что это изменение связано с наличием в цеолитах каггалитических центров двух видов (доступяых и малодоступных) и различием природы коксовых отложений на этих центрах. Доля начального количества кокса, выгорающего в первом периоде регенерации, приблизительно ( Ьотаетствовала доле активных центров первого вида. [c.77]


Смотреть страницы где упоминается термин Активные центры и их природа: [c.263]    [c.495]    [c.12]    [c.116]    [c.28]    [c.217]    [c.335]    [c.14]    [c.95]    [c.114]    [c.82]   
Смотреть главы в:

Катализ в органической химии -> Активные центры и их природа




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активный центр

Природа активности



© 2025 chem21.info Реклама на сайте