Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Граница плоскость скольжения

    Силы притяжения между метильными группами углеводородных цепей согласно вычислениям составляют около 1700 кал. Сила притяжения между полярными частями молекул, например между карбоксильными группами, равна около 9000 кал. Отсюда очевидно, что плоскости скольжения молекул могут быть только на границе соприкосновения молекул их метильными группами, т. е. по плоскости Ь или с1 (фиг. 13). Толщина слоя ориентированных у поверхности металла молекул зависит как от длины самих молекул, тЗ К и от влияния силового поля металла. Т рил л а наблюдал в граничном слое от 400 до 500 молекулярных слоев. Если в качестве пол яр но активной молекулы мы примем молекулу олеиновой кислоты, то, так как каждый слой состоит из двух молекул, а длина молекулы этой кислоты равна 11,2-10 8 получим общую толщину слоя ориентированных молекул 0,9—1,1 1-. [c.237]


    Граница этого смещения, называемая плоскостью скольжения, располагается в диффузном слое на расстоянии л = Л от поверхности раздела фаз (см. рис. 111.2). Потенциал ДЭС в точке с координатой л ==А обозначается и называется электрокинетическим или потенциалом. [c.61]

    В процессе образования гидрофобного золя рост ядра в той или иной стадии может быть приостановлен созданием так называемого адсорбционного слоя из ионов стабилизатора. Ионная сфера вокруг ядра коллоидной мицеллы состоит из двух слоев (или двух сфер) — адсорбционного и диффузного. Адсорбционный слой слагается из слоя потенциалопределяющих ионов, адсорбированных на поверхности ядра и сообщающих ему свой заряд, и части противоионов, проникших за плоскость скольжения и наиболее прочно связанных электростатическими силами притяжения. Вместе с ядром эта ионная атмосфера образует как бы отдельный гигантских размеров многозарядный ион — катион или анион, называемый гранулой. Диффузный слой, расположенный за плоскостью скольжения, в отличие от адсорбционного не имеет в дисперсионной фазе резко очерченной границы. Этот слой состоит из противоионов, общее число которых равняется в среднем разности между всем числом потенциалопределяющих ионов и числом противоионов, находящихся в адсорбционном слое. [c.318]

    Представления, развитые Гуи и Чэпменом, позволяют объяснить некоторые электрокинетические явления. Так, поскольку плоскость скольжения АВ при перемещении твердой и жидкой фаз относительно друг друга лежит в жидкости на некотором малом расстоянии А от межфазной границы, где потенциал еще не снижается до потенциала жидкой фазы (см. рис. VII, 9), то разность между ним и потенциалом внутри жидкой фазы в этом месте соответствует заряду этой части диффузного слоя. Этот потенциал и будет определять перемещение фаз при наложении электрического поля, т. е. обусловливать явления электрофореза или электроосмоса. Ясно, что электрокинетический потенциал, как его часто называют 1,-потенциал, является частью общего скачка потенциала фо. Таким образом, становится понятным, почему электро- [c.178]

    В последнее время большой интерес вызывают дефекты, которые получили название дислокации. Дислокации могут быть краевыми и винтовыми. Рассмотрим возникновение краевой дислокации на примере кубического кристалла, в котором происходит деформация сдвига одной части кристалла относительно другой (рис. 25). В этом кристалле левый верхний атомный слой сдвинулся на одно межатомное расстояние в плоскости скольжения. Граница между той областью, где сдвиг имеет место и где его нет, называется дислокацией. Из рис. 25 видно, что дислокация простирается в плоскости скольжения перпендикулярно к направлению скольжения. Вблизи дислокации деформация наибольшая. Дислокации в кристаллах могут перемещаться. [c.90]


    Уравнение (74) получено в предположении, что в единице объема N дислокаций распределены равномерно. Современные теории деформационного упрочнения [40] исходят из того факта, что дислокации образуют плоские скопления из п копланарных дислокаций, заторможенных барьерами в плоскостях скольжения, в результате чего увеличивается напряжение течения. Особенно характерно образование плоских скоплений для металлов с малой энергией дефекта упаковки (нержавеющая сталь, а-латунь), где затруднено поперечное скольжение и такие скопления возникают у границ. Взаимодействие дислокаций в скоплении приводит к увеличению энергии каждой из них, пропорциональному числу дислокаций п в скоплении (после отжига вследствие образования границ субзерен из дислокаций происходит, наоборот, значительное снижение энергии) [31]. [c.48]

Рис. 100. Схематическое представление распространения трещины в а-сплаве при коррозионном растрескивании (с+а) — дислокации, образованные в вершине трещины или вблизи ее, продвигаются вдоль плоскости скольжения А и сталкиваются с границей зерна ХУ (заметим, что если полоса скольжения узкая, то вершина трещины остается острой) / — трещина 2 — трещина после сдвига 3 — плоскость скола. Рис. 100. Схематическое представление <a href="/info/1579126">распространения трещины</a> в а-сплаве при <a href="/info/69600">коррозионном растрескивании</a> (с+а) — дислокации, образованные в вершине трещины или вблизи ее, продвигаются вдоль <a href="/info/70944">плоскости скольжения</a> А и сталкиваются с <a href="/info/12251">границей зерна</a> ХУ (заметим, что если <a href="/info/333704">полоса скольжения</a> узкая, то вершина трещины остается острой) / — трещина 2 — трещина после сдвига 3 — плоскость скола.
    Электрокинетические явления в гетерогенных дисперсных системах возможны при наличии на границе раздела фаз двойного электрического слоя, имеющего диффузионное строение. Плоскость скольжения проходит по диффузионному слою, и часть его ионов остается в дисперсионной среде. В результате дисперсная фаза и дисперсионная среда оказываются противоположно заряженными. Потенциал, возникающий на плоскости скольжения, называется электрокинетическим потенциалом. Рассмотрим получение коллоидной частицы на примере золя гидроксида железа (111) с помощью гидролиза хлорида железа  [c.117]

    Известно, что при движении одной из фаз относительно другой жидкая фаза смещается относительно твердой заряженной поверхности не по границе раздела фаз, а по некоторой плоскости 5, которая называется плоскостью скольжения. Очевидно, что при этом перемещаться относительно поверхности будет только заряд расположенный с внешней стороны от плоскости скольжения. Его величина однозначно связана с напряженностью поля на плоскости скольжения формулой (3.5.19) при подстановке в нее координаты плоскости скольжения вместо координаты плоскости максимального приближения противоионов ё. [c.602]

    Существует ряд электрокинетических явлений, для которых характерно движение раствора относительно заряженной поверхности или наоборот. В электрпческом поле наличие заряженной поверхности проявляется в действии на раствор некоторой силы, и, наоборот, при движении заряженной поверхности относительно раствора индуцируется электрическое поле. В обоих случаях между двойным слоем и средой имеется плоскость скольжения, и результаты измерений можно интерпретировать как изменение плотности заряда до этой плоскости. Строго говоря, 1 -потенциал не является потенциалом межфазной границы, поскольку он развивается целиком внутри жидкой фазы его можно рассматривать как разность потенциалов в практически однородной среде между точкой на некотором расстоянии от поверхности и точкой а плоскости сдвига. [c.172]

    Рассмотрим бесконечный слой жидкости, ограниченный двумя параллельными плоскостями, находящимися на определенном расстоянии, и пусть одна из границ равномерно движется вдоль пленки. Если предположить, что на границах отсутствует скольжение и применимо обычное уравнение непрерывности для несжима-ющейся жидкости, то вязкость будет определена как тангенциальная сила, отнесенная к единице поверхности движущейся границы. [c.173]

    Далее кратко рассмотрим основные механизмы образования микротрещин, которые можно подразделить на дислокационные, диффузионные и в результате межзерен-ного сдвига. Дислокационные механизмы могут быть разделены на три группы. К первой группе относятся модели (Зинера, Стро, Коттерелла, Гилмана и др.), связывающие инициированные микротрещины со скоплением дислокаций в плоскостях скольжения. Эти скопления возникают в результате остановки движущихся дислокаций в различных барьерах, которыми являются границы зерен с большими углами разориентировки, включения, поля напряжений. Вторая группа моделей предполагает образование микротрещин в результате скопления дислокаций в окрестностях пересечения систем элементарных актов пластической деформации путем скольжения и двойникования (модель Коттерелла). В соответствии с концепциями моделей третьей группы микротрещины инициируются в результате взаимодействия дефектов кристаллической решетки при пластическом деформировании. Эта группа -барьерные механизмы, описывающие процесс развития трещин в результате объединения цепочек вакансий в движущихся дислокациях со ступенькой пересечение малоугловых границ аннигиляции дислокаций в близко расположенных плоскостях скольжения возникновения поля растягивающих напряжений от двух дислокационных скоплений противоположного знака. [c.86]


    В 1940 г. Дикс [24] высказал предположение, что между металлом и анодными включениями (такими, как ннтерметаллид-ная фаза uAlj в сплаве 4 % Си—А1), выпадающими по границам зерен и вдоль плоскостей скольжения, возникают гальванические элементы. Когда сплав, подвергнутый растягивающему напряжению, погружен в коррозионную среду, локальное электрохимическое растворение металла приводит к образованию трещин к тому же растягивающее напряжение разрывает хрупкие оксидные пленки на краях трещины, облегчая таким образом доступ коррозионной среды к новым анодным поверхностям. В подтверждение этого механизма КРН был измерен потенциал на границе зерна металла, который оказался отрицательным или более активным по сравнению с потенциалом тела зерна. Более того, катодная поляризация эффективно препятствует КРН. [c.138]

    Считают, что коррозия ускоряет пластическую деформацию напряженного металла путем образования поверхностных решеточных вакансий, в частности сдвоенных вакансий (дивакансий). Последние при комнатной температуре диффундируют внутрь металлической решетки сквозь зерна и границы зерен металла на порядок быстрее, чем моновакансии . Появление дивакансий облегчает пластическую деформацию вдоль плоскостей скольжения вследствие процесса переползания дислокаций. Чем выше скорость коррозии, тем больше доступность дивакансий и, следовательно, тем более выражено образование выступов и впадин, включающихся в процесс развития усталости. Существование минимальной скорости коррозии, необходимой для развития коррозионной усталости, позволяет предположить, что с уменьшением скорости коррозии снижается и скорость образования дивакансий. Концентрация див.акансий падает, и прекращается их влияние на движение плоскостей скольжения возможно такое падение концентрации, при котором дислокации аннигилируют или заполняются атомами металла. [c.163]

    Необходимо также отметить существование четвертого класса— дисперсионно-твердеющих нержавеющих сталей, которые приобретают высокую прочность и твердость в результате низкотемпературной термообработки, проводимой после закалки с вы--сокой температуры. Эти сплавы Сг—Ре содержат меньше никеля, чем это требуется для стабилизации аустенитной фазы (или вообще его не содержат). Зато они содержат такие легирующие элементы, как алюминий или медь, которые обеспечивают высокую твердость, приводя к образованию и выделению интерметаллических соединений вдоль плоскостей скольжения или границ зерен. Эти стали применяют в тех же случаях, что и коррозионностойкие никеле- [c.297]

    Сплавы типа дуралюмина (например, марки 2017 и 2024) содержат несколько процентов меди и, вследствие выделения uAla вдоль плоскостей скольжения и границ зерен, обладают повышенной прочностью. Выше температуры гомогенизации (приблизительно 480 °С) медь находится в твердом растворе. При закалке этот раствор сохраняется. При комнатной температуре происходит медленное выделение uAlj, и сплав постепенно упрочняется. Если закалка сплава от температур, отвечающих твердому раствору, производится в кипящей воде или, если после закалки его нагреть выше 120 °С (искусственное старение), то uAla выделяется преимущественно вдоль границ зерен. В результате участки, примыкающие к интерметаллическому соединению, обедняются медью. При этом границы зерен становятся анодами по отношению к зернам, а сплав приобретает склонность к межкристаллитной коррозии. Продолжительный нагрев восстанавливает однородность состава сплава в зернах и на границах зерен и устраняет склонность к коррозии такого типа. Однако это сопровождается некоторым ухудшением механических свойств. На практике сплав закаляют примерно от 490 °С, а затем следует старение при комнатной температуре. [c.352]

    Подставив вместо ф -потенциал, найдем, что при увеличении толидины диффузного слоя X (уменьшении и — величины обратной толщине слоя) -потенциал возрастает при постоянном расстоянии плоскости скольжения от границы раздела фаз. Так как понижение температуры, введение в систему индифферентного электролита (специфически не взаимодействующего с поверхностью) и увеличение заряда его ионов ведут к уменьшению толщины диффузного слоя, то соответственно снижается и электрокинетический потенциал. Отсюда же следует, что этот иотенциал будет снижаться и с уменьп1ением диэлектрической проницаемости среды, напрпмер, при добавлении в водный раствор спиртов, эфиров и других органических веществ. [c.218]

    Положения теории Гуи—Чаимена позволяют объяснить некоторые электрокинетические явления. Плоскость скольжения АВ (рис, П.9, г) при перемещении твердой и жидкой фаз относительно друг друга лежит в жидкости на некотором расстоянии Л от меж-фазной границы. Разность потенциалов между поверхностью скольжения и жидкой фазой называется электрокинетическим или -потенциалом. Она будет определять перемещение фаз при наложе-иин электрического поля, т. е. обусловливать явления электрофореза или электроосмоса. Электрокинетическнй или -потенциал является частью термодинамического потенциала фо. [c.54]

    Величина этого эффективного заряда определяется разностью между полным зарядом жидкости и зарядом тех ионов, которые находятся между границей раздела и плоскостью скольжения АВ в жидкости. С другой стороны, эффективный заряд твердого тела, равный сумме зарядов, находящихся на самом твердом теле, и зарядов тех ионов, которые находятся между границей раздела и плоскостью скольжения в жидкости, равен по величине и обратеп по знаку эффективному заряду жидкости. [c.37]

    В соответствии с моделью Гуи — Чапмена возникновение электрокинетического потенциала объясняется тем, что при относительном перемещении фаз слой жидкости определенной толщины прочно удерживается на твердой поверхности. Потенциал в плоскости разрыва такого пограничного слоя жидкости соответствует -потенциалу. Плоскость разрыва, проходящая по границе между слоем покоящейся жидкости и остальным ее объемом, называется также плоскостью скольжения. Модель Гуи — Чапмена объясняет наблюдающееся падение -потенциала под действием электролитов. Поскольку с ростом ионной силы раствора увеличивается по абсолютной величине градие 1Т потенциала в диффузном слое, то в плоскости скольжения происходит падение потенциала. [c.91]

    Пластическое деформирование кристаллических твердьа тел связано с появлением и передвижением в их объеме особых линейных дефектов структуры, подзываемых дислокациями (см. гл. IV, 4). Дислокация отделяет в плоскости скольжения ту часть кристалла, в которой произошло смешение атомов на одно межатомное расстояние, от той части кристалла, где такого смещения еще ае происходило (рис. Х1-31). Перемещение дислокации через весь кристалл приводит к сдвигу в плоскости скольжения на одно межатомное расстояние. Движение дислокаций может тормозиться различными дефектами кристаллической решет -кн инородными атомами, включениями, другими дислокациями, границами блоков монокристаллов, двойниковыми гр 1вицами, границами зерен в полик- [c.404]

    Скачок потенциала в плоскости скольжения, вблизи границы фаз, находящихся в движении одна относительно другой, называется электрокинетическим или -потенциалом. Наиболее характерное свойство электрокинети-ческого потенциала — это его зависимость от концентра- [c.245]

    Проявление разнообразных случаев етруктурной коррозии сплавов связано е различными скоробтами растворения отдельных структурных составляющих, имеющих разный химический состав, а также физически неоднородных участков металла (зерна, границе зерен, блочные структуры, границы блочных структур, кристаллографические плоскости и плоскости скольжения с различными атомными группировками, дислокации и другие дефекты кристаллической решетки). [c.32]

    Сплавы, склонные к коррозии под напряжением, характеризуются по крайней мере двумя анодными кривыми — основным фоном металла и участком, на котором возникает надрез с пиком напряжения, имеющим наиболее высокую скорость растворения. Такими участками могут быть структурные составляющие, границы зерен, блочных структур, кристаллографические плоскости и плоскости скольжения, дислокационные структуры. Наиболее интенсивно коррозия под напряжением развивается, когда надрезы находятся в активном состоянии или в еостоянии пробоя. [c.39]

    Распространение получила также гидриднан гипотеза водородной хрупкости, которая удовлетворительно объясняет снижение прочности под действием водорода тугоплавких металлов, например титана и его сплавов, а также сплавов на основе железа и алюминия, легированных гидридообразующими элементами. Гидриды могут возникать в сплавах по границам зерен, а также по плоскостям скольжения и, ввиду их относительно низкой прочности, охрупчивать сплавы. [c.20]

    Если граница между смещенными друг относительно друга участками плоскости скольжения параллельна вектору Бюргерса, то эта граница образует винтовую дислокацию. Присутствие винтовой дислокации обусловливает рост кристаллов при малых пересыщениях р-ра или расплава, когда вероятность появления зародыша невелика, выход винтовой дислокации на пов-сть образует ступеньку, т.е. обрыв атомной плоскости, к к-рому непрерывно присоединяются атомы, обеспечивая тем са.мым рост кристалла с миним. активац. затратами энергии. [c.30]

    При движении частицы двойной электрический слой разрывается. Место разрыва при перемещении твердой и жидкой фаз относительно друг друга называется плоскостью скольжения ninvi границей скольжения. На рнс. 8.5 плоскость скольжения обозначена линией АВ. Плоскость скольжения лежит или на границе между диффузным слоем и адсорбционным слоем, либо в диффузном слое, но вблизи этой границы. [c.108]

    Щ и движении частицы в растворе происходит разрыв мицеллы на две части твердую частицу с противоионами адсорбционного слоя, называемую коллоидной частицей, и противоионы диффузного слоя. Границу, по которой происходит разрыв мицеллы, называют гранифй скольжения. Плоскость скольжения, как правило, не совпадает с границей, разделяющей адсорбционный и диффузный слои, а несколько смещена от нее в сторону раствора. Электрический потенциал на плоскости скольжения называется элек-трокинетическим или дзета-потенциалом, который отличается от термодинамического потенциала (ро. который определяется зарядом поверхности. [c.115]

    Ионы натрия и другие катионы, окружающие в водной среде заряженные частицы кремнезема, не удаляются полностью в процессе фильтрации или центрифугирования и поэтому остаются на поверхности кремнезема после его высушивания. Если частицы кремнезема не находились в постоянном броуновском движении, то в водных растворах противоионы, такие, например, как ионы натрия, должны образовывать сплошной слой вблизи адсорбированных на поверхности кремнезема гид-роксил-ионов Однако прГ( термическом возбуждении частиц кремнезема из большей части указанных противоионов вокруг частиц формируется диффузное облако, называемое слоем Гуи . Оставшаяся часть противоионов вблизи поверхности рассматривается как слой Штерна . Толщина диффузного слоя Гуи определяется расстоянием от поверхности частицы до точки, в которой потенциал составляет только 1/е или 0,37 значения потенциала в бесконечности. Дзета-потенциал измеряется посредством электрофореза и рассматривается как потенциал между плоскостью скольжения на наружной границе слоя Штерна, которая перемещается вместе с движущейся частицей, и бесконечно удаленной точкой дисперсионной среды. [c.487]

    Рассмотрим поведение двухфазной структуры, состоящей и массиве тонких пластин, размещенных на расстоянии Д (величина блока) одна о другой в пластичной однофазной кристаллической матрице. Тонкие прочные пластины представляют собой идеальную модель субзеренной границы, в которой, как мы ранее установили, сосредоточены дислокации. Подвергнув этот "композит" сдвиговой деформации скольжением но одной системе плоскостей скольжения в направлении, норшльном поверхности пластины так, чтобы центральная ч> сть каждой плоскости окольжения претерпела сдвиг на величину / (рис. 5.1), получим [c.100]

    Существенный вклад в образование блоков и малоугловых границ вносят также избыточные компоненты кристаллизуемого вещества, которые, образуя в монокристалле твердые частицы иной фазы, являются источником зарождения блоков (см. рис. 28). Методом рентгеновского микроанализа было установлено, что при выращивании монокристаллов иттрий-алюминиевого граната механические частицы, как отмечалось выше, являются кристалликами алюмината иттрия. К аналогичному результату пртели исследованм двулучепреломления алюмината иттрия с помощью компенсатора Берека в монохроматическом свете (Л = О, 586 мкм). По характеру поля просветления была определена плоскость скольжения дислокаций, которая является плоскостью симметрии шестилепестковой розетки. (На рис. 31 видны только четыре из них две розетки лежат в перпендикулярном к наблюдению направлении и поэтому не видны). [c.48]

    Значение молекулярного взаимодействия граничных слоев [71] видно из опытов по измерению сопротивления сдвигу в периферической и средней части толстых молекулярно-сольватных слоев растворов жирных кислот в углеводородных жидкостях на границе с металлами [58, 59, 78]. Ориентация молекул ПАВ перпендикулярно поверхности твердого тела создает в сольватной оболочке плоскости скольжения, по которым легко реализуется взаимный сдвиг. Они образованы концевыми группами СНз молекул ПАВ. Это подтверждается тем, что при постоянной толщине сольватного слоя сопротивление сдвигу не зависит от молекулярного веса жирной кислоты (рис. 4). Как известно, ван-дер-ваальсово взаимодействие групп СНз мало даже но сравнению с молекулярным притяжением остальных углеводородных групп. Фторирование жирных кислот приводит к дальнейшему уменьшению сопротивления сдвигу в плоскости скольжения, так как сила притяжения групп СРз меньше, чем групп СНд. [c.149]

    Рас. 1.033. Листовая сталь 12Х17ГЭАН4 (а) и 07Х21Г7АН5 после закалки (б) и провоцирующего отжига при 650 С, 1 ч (в). Выделение карбидов типа М аС по границам зерен и плоскостям скольжения внутри зерна. Травление — см. [c.269]

    Если адсорбция достаточно сильная, то время жизни иона в щтер-новском слое довольно велико (см. разд. Х1У-2) Е1 направлении по нор.угали к поверхности ион можно считать неподвиж-ным. Здесь возникает также вопрос о тангенциальной подвижности ионов или об их сопротивления сдвигу. Кажется правдоподобным, что ионы и окружающий их раствор в слое Штерна сцеплены довольно жестко и что сам слой также неподвижен и характеризуется высоким сопротивлением сдвигу. Поскольку эта тангенциальная неподвижность определяется всей средой в целом и прежде всего растворителем, нет оснований считать, что плоскость скольжения в точности совпадает с границей слоя Штерна п, как предполагается на рис. 1У-4, может быть локализована на некотором расстоянии от этой границы. Потенциал в этой плоскости скольжения известен как С,-потенциал и играет важную роль в электрокинетических явлениях, обсуждаемых в разд. 1У-в. [c.170]


Смотреть страницы где упоминается термин Граница плоскость скольжения: [c.149]    [c.97]    [c.232]    [c.105]    [c.217]    [c.39]    [c.250]    [c.339]    [c.35]    [c.99]    [c.99]    [c.174]    [c.218]   
Курс коллоидной химии (1976) -- [ c.176 , c.178 , c.185 , c.189 , c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Граница скольжения фаз

Плоскости скольжения



© 2025 chem21.info Реклама на сайте