Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция концентрировании

    Из полученных кинетических данных [44, 45] при коагуляции концентрированных (примерно 20%) латексов можно определить две пороговые концентрации электролита Спор, и С ор1 (рис. 5 До Спор, имеет место резкое снижение времени образования первичных ассоциатов Т] (время флокуляции) и времени разделения фаз — собственно коагуляции системы тг- Выше Спор, незначительно меняется Г1 и линейно снижается тз с повышением концентрации электролита в системе вплоть до Спор,, выше которой незначительно изменяется время коагуляции тг при дальнейшем увеличении [c.257]


    Уменьшение гидратации частиц с повышением конценграции полимера в латексе сказывается на коагулирующей способности электролитов. Соотношение порогов коагуляции (для Na , Са", А1") зависит от концентрации латекса, уменьшаясь от 1/Z до при повышении последней от 3 до 30% [45], что, по-видимому, указывает на коагуляцию концентрированных латексов по нейтрализационному механизму. [c.260]

    Изучение коагуляции концентрированных латексов [c.92]

    На рис. 5 приведены кинетические кривые коагуляции латексов, концентрации которых различались в сотни раз [9] При возрастании концентрации латекса общая структура кинетических кривых сохраняется, однако промежуточный индукционный период быстро сокращается и, наконец, исчезает. Последнее можно объяснить резким увеличением числа столкновений частиц. При большой скорости коагуляции на поверхности быстро растущих агрегатов не успевают формироваться плотно упакованные насыщенные и гидратированные адсорбционные слои эмульгатора. Связанный с ними индукционный период исчезает. Если предлагаемое объяснение справедливо, то можно ожидать, что индукционный период будет появляться вновь при замедлении коагуляции концентрированного латекса. Это экспериментально подтверждается. На рис. 6 приведены кривые коагуляции 5 %-ного латекса. При увеличении адсорбционной насыщенности образца коагуляция замедляется и появляется индукционный период. К такому же результату приводит и замедление коагуляции при снижении концентрации электролита — коагулянта, повышении pH латекса или при введении стабилизирующих добавок полимера. [c.215]

    Именно такое условие в отличие от условия механической устойчивости системы и обычного критерия стабильности разбавленных коллоидных растворов [4, 5] принимается нами как условие быстрой коагуляции концентрированных золей. [c.41]

    Основным преимуществом описанного метода седиментационного анализа является его высокая точность, так как он позволяет проводить исследования весьма разбавленных суспензий, содержащих 0,2—0,001 вес. % дисперсной фазы. При этих концентрациях полностью исключаются явления коагуляции, вызываемые совместным осаждением частиц различных размеров, неизбежные при осаждении концентрированных суспензий, применяемых в других методах. Недостатками метода являются длительность опытов и вероятность ошибок при графической обработке результатов. [c.25]

    Основное назначение процесса флотации применительно к обработке сточных вод заключается в концентрировании активированного ила и подвергшихся предварительной коагуляции суспензий, имеющих плотность, близкую к плотности воды. [c.52]

    В соответствии с представлениями о концентрированных коллоидных системах указанные сточные воды оказались агрегативно более устойчивыми, при очистке их методом коагуляции хлоридом магния возрастает расход коагулянта до 1,2—1,8 кг/м вод, что в 4—5 раз превышает расход хлорида магния для очистки разбавленных сточных вод, кроме того, эффективность очистки снижается. Выделяющийся при коагуляции осадок (18-25 %) имеет большую влажность (97,0-98,2 %) и трудно поддается обезвоживанию вследствие высокой концентрации сорбированного им ПВС. [c.99]


    Агрегативная неустойчивость дисперсных систем приводит к коагуляции дисперсной фазы, т. е. слипанию частиц под действием межмолекулярных сил притяжения. В результате слипания частиц в дисперсной системе образуются крупные агрегаты (коагуляты). Эти агрегаты седиментационно неустойчивы и могут выпадать в осадок или всплывать. В промывочных жидкостях, представляющих собой, как правило, концентрированные структурированные системы, разделение фаз не столь явно и визуально не всегда заметно. Поэтому о коагуляционных процессах в них судят по изменению свойств, измеряемых инструментально. [c.71]

    Аморфные осадки, особенно гидрофильные, лучше всего осаждать из. возможно более концентрированных растворов, так как при этом значительно уменьшаются общая поверхность и объем осадка. Один из наиболее гидрофильных осадков — кремневую кислоту, вообще не удается выделить иначе, как при удалении всего растворителя. Только тогда происходит полная коагуляция ее коллоидного раствора. Для этого раствор силиката обрабатывают соляной кислотой и выпаривают досуха. [c.78]

    Факторы коагуляции коллоидных систем могут быть весьма разнообразными. Так, например, коагуляция может быть вызвана повышением температуры, длительным диализом, добавлением электролитов, разного рода механическими воздействиями (размешиванием, встряхиванием, взбалтыванием), сильным охлаждением, ультрацентрифугированием, концентрированием, пропусканием электрического тока, а также действием на данный золь других золей. В ряде случаев коагуляция может происходить в результате чисто химических реакций, протекающих в золях (явление старения). [c.226]

    Как показали исследования, высокомолекулярные вещества, выделенные из раствора высаливанием, после отмывки их от электролитов могут быть снова переведены в раствор (явление обратимо). Коллоиды, которые при устранении фактора, вызвавшего коагуляцию, способны переходить из состояния геля в состояние золя, носят название обратимых коллоидов. Однако высокомолекулярные вещества могут при определенных условиях осаждаться и необратимо. Такое необратимое осаждение высокополимеров, в частности белков, иод влиянием высокой температуры, цри воздействии концентрированных кислот и щелочей, дубильных веществ, лучистой энергии называется денатурацией. При денатурации происходит не только осаждение полимеров, но и изменение их химической природы. Белки при денатурации становятся нерастворимыми и в большинстве случаев утрачивают способность к набуханию. [c.383]

    Коагуляция при разбавлении или концентрировании золей может быть объяснена десорбцией стабилизирующего электролита с поверхности частиц, что обусловливает падение заряда частиц. В этом случае может протекать гидролиз, способствующий снижению устойчивости системы. [c.89]

    При разбавлении коллоидной системы технической водой, содержащей электролиты, коагуляция системы может произойти и под действием электролитов. При выпаривании протекает процесс концентрирования золя, что приводит систему в неустойчивое состояние. [c.89]

    В качестве боковой жидкости часто применяют ультрафильтрат золя или дисперсионную среду, полученную коагуляцией коллоидной системы путем замораживания. Однако если исследуют относительно концентрированные коллоидные растворы с небольшим содержанием электролитов, приготовленная таким способом боковая жидкость обладает все же несколько иной электропроводностью по сравнению с золем. В этом случае при вычислении скорости электрофореза необходимо вводить поправки на распределение напряженности в электрическом поле, что подчас бывает трудно. [c.208]

    Коагуляция под влиянием электролитов является наиболее типичным случаем коагуляции и обычно применяется в технике, когда необходимо разрушить коллоидную систему. Однако очень часто коагуляция обусловливается и другими, чисто физическими факторами — механическим воздействием на коллоидную систему, нагреванием или замораживанием золя, разбавлением или концентрированием. Коагуляция может также происходить под влиянием видимого и ультрафиолетового света, рентгеновских лучей, радиоактивного излучения, при действии электрического разряда и ультразвука. Наконец, разрушение системы может наступить спонтанно при длительном хранении коллоидной системы. К сожалению, особенности и механизм безэлектролитной коагуляции до настоящего времени изучены недостаточно. Между тем для понимания явления коагуляции во всех его аспектах, для составления верного представления о его существе подобные исследования могли бы дать очень много. Несомненно, что правильный взгляд на явление может быть установлен лишь при всестороннем его изучении, при подходе к нему с самых различных точек зрения. [c.308]

    Некоторые исследователи объясняют коагуляцию золя при концентрировании увеличением числа столкновений частиц друг с другом. Однако это объяснение мало соответствует тому факту, что золи проявляют способность к спонтанной коагуляции только тогда, когда их концентрация превышает определенное критическое значение. Можно полагать, что неустойчивость коллоидной системы выще определенной концентрации объясняется увеличением в единице объема, содержания не только чужеродного электролита, но и самих коллоидных частиц, которые должны рассматриваться как поливалентные ионы, а также и содержания соответствующих противоионов. Подобное допущение вполне вероятно. [c.311]


    В литературе имеются указания, что коагуляция атмосферных аэрозолей может быть вызвана разбрасыванием с самолета высокодисперсного песка, частицы которого несут электрический заряд, по знаку обратный заряду частиц аэрозолей. Другой метод искусственного рассеивания облаков и туманов с помощью коагуляции заключается в распылении в аэрозоль растворов гигроскопических веществ, например, концентрированных растворов хлорида кальция (В. А. Федосеев, 1933 г.). Капельки этой жидкости захватывают капельки воды, укрупняются и выпадают в виде дождя. Для разрушения переохлажденных атмосферных аэрозолей можно применять также дымы иодида серебра или, иодида свинца, частицы которых являются зародышами и вызывают в облаках образование кристалликов льда. [c.362]

    Различен и механизм обоих явлений. Коагуляция золей происходит обычно в результате сжатия двойного электрического слоя и уменьшения или полного исчезновения электрического заряда на поверхности частицы, являющегося в этом случае основным фактором устойчивости. Выделение же из раствора полимера при добавлении электролита объясняется уменьшением растворимости высокомолекулярного вещества в концентрированном растворе электролита. По аналогии с подобными явлениями в растворах низкомолекулярных веществ такое выделение высокомолекулярного вещества из раствора можно называть высаливанием. Дебай считает, что при высаливании молекулы растворенного вещества вытесняются из электрического поля введенных ионов, которые связываются с полярными молекулами растворителя. Таким образом, высаливание принципиально не отличается от выделения высокомолекулярного вещества из раствора при добавлении к последнему нерастворителя. Как правило, высаливающее действие ионов изменяется соответственно тому порядку, в каком они стоят в лиотропном ряду. Так, катионы по мере уменьшения их высаливающего действия могут быть расположены в ряд  [c.466]

    Увеличение размера частиц может идти как за счет коагуляции, т. е. слипания частиц, так и за счет изотермической перегонки, или эффекта Кельвина. Этот эффект заключается в том, что вещество из мелких частиц переносится в крупные, у которых химический потенциал меньше. Постепенно мелкие частицы исчезают, а крупные увеличиваются. Коагуляция и изотермическая перегонка вызывают нарушение седиментационной устойчивости и разделение фаз (образование хлопьев, выпадение осадков, расслоение). В концентрированных системах коагуляция может привести к образованию пространственных структур и не сопровождаться разделением фаз. [c.430]

    Золи кремниевых кислот обладают гидрофильными свойствами. Прибавлением электролитов не всегда удается вызвать коагуляцию. В литературе имеются указания на то, что сравнительно быструю коагуляцию можно вызвать добавлением к золю кремниевых кислот баритовой воды или концентрированного раствора сульфата алюминия. [c.103]

    Свойства. Крупные кристаллы в виде октаэдров, иногда образуются также ромбоэдры или бипирамиды. На воздухе выветриваются. Хорошо растворяются в воде. Разбавленные растворы кислоты могут длительное время храниться иа холоду прн иагреванин наступает коагуляция. Концентрированные растворы часто коагулируют уже при незначительном нагревании. [c.1896]

    Две предыдущие работы посвящены оценке устойчивости разбавленных синтетических латексов к коагулирующему действию электролитов. В реальных условиях коагулируют латексы с содержанием каучука 1—5%. Поэтому представляет интерес вопрос об устойчивости таких латексов. Цель данной работы — построить кинетические кривые коагуляции концентрированного латекса и определить ПБК. Для работы можно рекомендовать 2— 10%-ный латекс и электролиты-коагулянты Na l и a lj. [c.92]

    Результаты опытов сводят в таблицы (см. стр. 85). Для каждого опыта строят кинетические кривые в координатах = /ОёО- Определив по кривым время первой стадии коагуляции, строят график t = f( ) зависимости времени первой стадии от концентрации коагулянта, по которому определяют порог быстрой коагуляции концентрированного латекса. Получив значения ПБК для Na l и a lj, можно, как и в предыдущих работах, проверить подчинение первой стадии коагуляции латекса правилу Шульце — Гарди. [c.93]

    Как видно из отношения коагулируюш,их концентраций электролитов (табл. 1), протекание первой стадии коагуляции и в разбавленных, и в концентрированных латексах определяется электростатическим фактором стабилизации. При увеличении концентрации латексов наблюдается сдвиг соотношения с/ = onst от С2 до С2 , что можно объяснить возрастанием роли нейтрализационных явлений, обусловленных взаимодействием анионактивного эмульгатора с двух- и трехвалентными ионами электролита — коагулянта. То, что при коагуляции концентрированных латексов также наблюдается промежуточный индукционный период, показывает что и в этом случае процесс регулируется совокупным действием электростатического и неэлектростатических факторов стабилизации. [c.216]

    Радиационное давление создает как акустические потоки, рассмотренные в предыдущем подразделе, так и воздействие энергосиловой природы. Феноменология действия радиационного давления с точки зрения силового воздействия сводится к концентрированию дисперсных частиц в пучностях стоячей волны (при плотности включений больше плотности среды) или в узлах (при плотности включений меньше плотности среды) — основа процессов коагуляции, коалесценции, флокуля-ции, агрегирования и т. п. [c.166]

    Согласно Пешли, гидратные (точнее, структурные) силы могут возникать как на гидрофильных поверхностях с гидратированными полярными или ионными группами, так и на поверхностях, которые вначале не являются гидрофильными, но могут изменяться при адсорбции гидратированных форм и вести себя как гидрофильные ( вторичная гидратация ) [121]. В основе теории гидратных сил лежит положение о поверхностной адсорбции гидратированных ионов. Анализ явления показывает, что действие гидратных сил определяется не только плотностью адсорбированных катионов, но и изменением свободной энергии, связанным с замещением катионом иона Н3О+. Силы гидратации проявляются в достаточно концентрированных растворах (более 10 моль/л), и их величина определяется положением ионов в лиотропном ряду. Этот механизм, согласно которому взаимодействие гидратированных катионов приводит к возникновению сил отталкивания между поверхностями с достаточно высокой плотностью поверхностного заряда и слабой способностью к образованию водородных связей, может объяснить высокие пороговые концентрации, необходимые для коагуляции амфотерных частиц латекса полистирола [501] и золя SIO2 [502]. [c.173]

    Насыщение исходных и циркулирующих растворов растворением в них твердых или газообразных компонентов широко распространено в химических производствах. Например, в содовом производстве донасыщается природный рассол за счет растворения твердой поваренной соли. Доиасыщение производится во многих производствах с циркулирующими раство-рам1г, например при электролизе раствора поваренной соли, в производстве глинозема и др. Для осаждения из жидкостей вредных и балластных примесей к ним добавляют такие вещества, которые реагируют с примесями с образованием кристаллических осадков затем осадки отделяют. Иногда добавки вызывают коагуляцию и осаждение коллоидных примесей или полимеров. Осаждение примесей из раствора применяется во многих производствах органического синтеза, минеральных солей, соды и т. п. В других случаях из раствора кристаллизуют (осаждают) основной компонент, оставляя примеси в растворе. Так получают в концентрированном виде многие соли этот метод часто применяется в гидрометаллургии для выделения концентратов цветных металлов из полиметаллических руд. [c.18]

    Между электродами, изготовленными из алюминия (катод) и СтЗ (анод), создается электрическое поле. В результате этого происходят три основные процесса диполофоретическое концентрирование и коалесценция нефтепродукта, коагуляция дисперсной фазы за счет образования гидроксида железа и флотации частиц нефтепродукта образующимся электролизным газом. [c.78]

    Поскольку силы взаимодействия поляризованных частиц загрязнений пропорциональны Е , предполагалось, что при вытянутой форме ассоциатов и близких расстояниях между ними характер сближения будет диполь-ным. Однако, как видно из приведенных выще данных, зффективность разделения в переменном поле оказалась намного ниже, чем в постоянном. Это связано с тем, что в постоянном электрическом поле возможно злектрофоретическое концентрирование частиц и капель, после чего поляризационная коагуляция может протекать как в первичном, так и во вторичном потенциальном минимуме. [c.95]

    Укрупнение частиц может идти двумя путями. Один из них, называемый изотермической перегонкой, заключается в переносе вещества от мелких частиц к крупным, так как химический потенциал последних меньше (эффект Кельвина). В результате мелкие частицы постепенно растворяются (испаряются), а крупные растут. Второй путь, наиболее характерный и общий для дисперсных систем, представляет собой /соаг(/ля <и/о, заключающуюся в слипании (слиянии) частиц дисперсной фазы. В общем смысле под коагуляцией понимают дотерю агрегативной устойчивости дисперсной системы. Коагулящ я в разбавленных сИЖМах приводит к потере, седимеитационной устойчивости и в конечном итоге к расслоению (разделению) фаз. К процессу коагуляции относят адгезионное взаимодействие частиц дисперсной фазы с макроповерхностями. В более узком смысле коагуляцией называют слипание частиц, процесс слияния частиц получил название коалесценции. В концентрированных системах коагуляция может проявляться в образовании объемной структуры, в которой равномерно распределена дисперсионная среда. В соответствии с двумя разными результатами коагуляции различаются и методы наблюдения и фиксирования этого процесса. Укрупнение частиц ведет, нанример, к увеличению мутности раствора, уменьшению осмотического давления. Структурообразование изменяет реологические свойства системы, например, возрастает вязкость, замедляется ее течение. [c.271]

    Коагуляция лиофобных дисперсных систем может происходить в результате различных внешних воздействий, например при механичес1юм воздействии (ультразвука), действии электрического поля, при нагревании или замораживании системы. Коагуляция лиофобных золей может быть вызвана также их сильным разбавлением или концентрированием. Наиболее часто коагуляция дисперсных систем происходит при добавлении электролитов. Различают два типа электролитной коагуляции коллоидных систем 1) нейтрализационную, происходящую в результате снижения поверхностного потенциала частиц 2) конпен-трационную, протекающую вследствие сжатия диффузной части двойного электрического слоя (потенциал поверхности в этом случае не изменяется). [c.162]

    Как показывают многочисленные исследования, гели с течением времени меняют свои свойства, т. е. стареют. В процессе старения на их поверхности начинают появляться капельки жидкости, которые затем сливаются вместе, образуя сплошную жидкую фазу. Происходит разделение студня на две фазы — дисперсионную и дисперсную. Это разделение не является ни коацервацией, ни коагуляцией (высаливанием). Подобный самопроизвольный процесс старения геля получил название си-нерезиса или отмокания. Жидкая фаза, выделяющаяся при синерезисе, является не чистым растворителем, а очень разбавленным раствором аналогично, выделяющаяся при синерезисе дисперсная фаза есть лишь более концентрированный студень, так называемый синергический сгусток, т. е, студень с достаточно большим количеством растворителя (опыт 120). [c.230]

    Факторы коагуляции коллоидных систем бывают весьма разнообразными. Коагуляция может быть вызвана повышением температуры, длительным диализом, добавлением электролитов, разного рода механическими воздействиями (размешиванием, встряхиванием, взбалтыванием), сильным охлаждением, ультрацен-трифугиронанием, концентрированием, пропусканием электрического тока, а также действием на данный золь других золей. В ряде случаев коагуляция может происходить в результате химических реакций, протекающих в золях (явление старения). Поскольку главное условие уменьшения устойчивости коллоидных растворов— потеря электрического заряда, основными методами их коагулирования являются методы снятия зарядов. Чаще всего в практике для этой цели пользуются воздействием иа коллоидные растворы различных электролитов. [c.367]

    В связнодщ персных системах частицы связаны друг с другом за счет межмолекулярных сил, образуя в дисперсионной среде своеобразные пространственные сетки или каркасы (структуры). Частицы, образующие структуру, очевидно, не способны к взаимному перемещению и могут совершать лишь колебательные движения. К таким системам относятся гели, концентрированные суспензии (пасты) и концентрированные эмульсии и пены, а также порошки. Гели могут образоваться как в результате коагуляции коллоидных систем и объединения в одно целое выпавшего осадка (коагели), так и вследствие молекулярного сцепления в отдельных местах частиц золя, образующих сравнительно рыхлые сетки или каркасы (лиогели). В последнем случае в гелях сохраняется внешняя однородность системы. Естественно, образованию геля всегда способствует повышение концентрации дисперсной фазы в системе. Переход золя в состояние геля называется гелеобразо-ванием. [c.28]

    Для исследования кинетики коагуляции Б. В. Дерягиным и Н. М. Кудрявцевой был применен поточный ультрамикроскоп (по схеме, близкой к поточному ультрамикроскопу для аэрозолей Б. В. Дерягина и Г. Я. Власенко). С помощью поточного ультрамикроскопа можно определять за 2—3 мин численную концентрацию гидрозолей В1 лоть до 10 —10" частиц в 1 см другие способы счета частиц не позволяют измерять концентрацию больше 10 —10 чабтиц в 1 см При применении достаточно концентрированных золей с помощью поточного микроскопа можно наблюдать не только быструю, но и медленную коагуляцию, отвечающую малым значениям коэффициента е, не затрачивая для этого чрез ерно много времени. [c.267]

    Коагуляция при разбавлении или концентрировании коллоидной системы. Наблюдающуюся в некоторых случаях коагуляцию при разбавлении гидрозолей водой можно объяснить -стабилизующего электролита с поверхности частиц в дисперсионную среду, что обусловливает падение за ряда частицы. При этом, конечно, может происходить и гидролиз стабилизатора, вслед- [c.310]

    Гораздо труднее объяснить коагуляцию при концентрировании коллоидных систем. Правда, при концентрировании коллоидной системы путем выпариваниа в ней повышается концентрация электролитов, всегда содержащихся в гидрозо-ля,х, что может действовать на систему астабилизующим образом. Однако опыг показал, что коагуляция гидрозоля происходит и в том случае, когда концентри рование проводится с помощью ультрафильтрации, т. е. когда состав дисперсионной среды не меняется. [c.311]

    Стабилизаторы не только препятствуют обычному агрегированию частичек — коагуляции или коалесценции, но и предотвращают развитие коагуляционных структур, адсорбционно блокируя места сцепления частичек и препятствуя их сближению. Поэтому стабилизаторы суспензий являются также адсорбционными пластификаторами в виде очень малых добавок они понижают прочность структуры (структурную вязкость). Таким образом, добавки пластификатора (стабилизатора), разрушая пространственную сетку, снижают количество жидкой среды, которая не связывается молекулярными силами, но механически удерживается в ячейках структуры. Тем самым снижается во-допотребность, маслоемкость твердой дисперсной фазы, т. е. объем жидкости, минимально необходимый для получения однородного замеса на единицу объема твердой дисперсной фазы, с получением достаточно легкоподвижной предельно концентрированной пасты. Именно поэтому добавки поверхностно-активных веществ или поверхностная активность самого связующего обеспечивает минимальную маслоемкость пигментов е лакокрасочных системах, что повышает укрывис- [c.70]


Смотреть страницы где упоминается термин Коагуляция концентрировании: [c.17]    [c.272]    [c.39]    [c.194]    [c.295]    [c.296]    [c.165]    [c.354]   
Курс коллоидной химии (1976) -- [ c.308 , c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Изучение коагуляции концентрированных латексов

Коагуляция

ТЕОРИЯ КОАГУЛЯЦИИ И УСТОЙЧИВОСТИ КОНЦЕНТРИРОВАННЫХ ДИСПЕРСНЫХ СИСТЕМ В ДИНАМИЧЕСКИХ УСЛОВИЯХ



© 2025 chem21.info Реклама на сайте