Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекула без неподеленных пар электронов

Рис. 5. (Ожидаемые равновесные геометрические конфигурации молекул в зависимости от числа связывающих и неподеленных электронных пар Рис. 5. (Ожидаемые равновесные <a href="/info/1497368">геометрические конфигурации молекул</a> в зависимости от числа связывающих и неподеленных электронных пар

    Исходя из приведенных данных, строение молекулы Оз можно объяснить следующим образом. Центральный атом кислорода молекулы Оз находится в состоянии хр2-гибридизации (за счет 2 -, 2p .- и 2р, -орбиталей). Две из гибридных 5р -орбиталей центрального атома участвуют в образовании двух <т-связей О—О (дпух молекулярных о< и-орбиталей). Третья хр -гибридная орбиталь (молекулярная сг-орбиталь) содержит неподеленную электронную пару. 2р -Орбиталь центрального атома (расположенная перпендикулярно плоскости расположения атомов) и 2р -орбитали крайних атомов участвуют в образовании нелокализованной я-связи (молекулярная ясв-орбиталь). Таким образом, невозбужденное состояние молекулы Оз отвечает следующему заполнению молекулярных орбиталей  [c.320]

    Согласно другой точке зрения в отличие от Н2 и 2 в молекуле Ig полагают дополнительное л-связывание. Последнее возникает по донорно-акцепторному Механизму за счет неподеленной электронной пары одного атома и свободной 3 /-орби али другого. [c.287]

    Однако в КНз не все эти электронные пары эквивалентны. Льюисова структура КНз показывает, что в этой молекуле имеются три простые связи N—Н и одна неподеленная электронная пара. Известно, что все три атома водорода в КНз эквивалентны. Простое объяснение химической связи в КНз сводится к тому, что в этой молекуле имеются три локализованные связывающие электронные пары, находящиеся на орбиталях, образованных из 2р-орбиталей азота и 1х-орбиталей водорода (рис. 13-10). Согласно такой модели, неподеленная пара электронов находится на 2х-ор-битали атома азота. [c.559]

    Координационное число центральных ионов в аквокомплексах в разбавленных растворах (т. е. при достаточном количестве молекул воды) в общем случае соответствует значению характерного координационного числа катиона (акцептора) и аниона (донора). Так, для ионов АР+, СгЗ+, Со + координационное число обычно равно шести, а для Ве + — четырем. В разбавленных водных растворах, следовательно, эти ионы находятся в виде гидратированных комплексных ионов типа октаэдрического [А1(0Н г) в тетраэдрического [Ве(ОН2)4] - Для иона СГ, имеющего четыре неподеленные электронные пары, координационное число, по-видимому, равно четырем, что отвечает образованию четырех водородных связей. [c.129]

    В кислой форме и-нитрофенола на атоме кислорода уже нет отрицательного заряда. Неподеленные электронные пары кислорода гораздо труднее вовлекаются в делокализацию поэтому энергетический уровень первого возбужденного электронного состояния оказывается выше, чем у основной формы. Поглощение света имеет максимум при 320 нм, который приходится на начало ультрафиолетовой области, и вследствие этого соединение имеет бледную желто-зеленую окраску. Фенолфталеин, бесцветный в кислой среде и розовый в основной среде, имеет более сложную молекулу, которая в зависимости от кислотности среды изменяется подобным же образом. [c.307]


    По той же причине анилин-более слабое основание, чем аммиак или алифатические амины. Неподеленная электронная пара азота, которая должна притягивать протон, частично вовлекается в делокализацию на ароматический цикл, и это понижает ее способность притягивать протон и ионизовать отдающую его молекулу. [c.305]

    Пространственная структура молекулы определяется видом гибридизации валентных орбиталей центрального атома и числом неподеленных электронных иар, содержащихся в его валентном электронном слое. [c.65]

    Присутствие в молекулах неподеленных электронных пар сказывается на величине валентных углов. Это связано с тем, что силы расталкивания между ними больше, чем между относительно закрепленными связывающими электронными парами (СП). По убывающей силе расталкивания электронные пары могут быть расположены в следующем порядке НП—НП>НП—СП>СП—СП. В результате НП в известной степени как бы давят на электронные пары свя- [c.118]

    Донорно-акцепторные связи могут образовываться между молекулами, в которых все атомы валентно насыщены и которые не содержат неспаренных электронов. Такие связи широко распространены в комплексных соединениях, кристаллогидратах солей и и др. Так, NHз, соединяясь с ВРз, образует ЫНз ВРз благодаря наличию свободных орбит в атоме бора и неподеленных электронных пар в атоме азота. Прочность таких связей может достигать прочности обычных ковалентных связей. При этом часто играет роль то, что из двух нейтральных частиц при образовании между ними донорно-акцепторной связи одна (донор) становится [c.69]

    Атом а юта в молекуле аммиака связан тремя ковалентными связями с атомами водорода и сохраняет при этом одну неподеленную электронную пару  [c.401]

    При образовании комплексных ионов (см. гл. XI) молекулы NHз предоставляют неподеленные электроны, а ионы металлов — свободные орбитали. Так, ион предоставляет одну 5 - и одну [c.54]

    Все молекулы воды, образующие небольшие (л 15) кластеры, сильно ориентированы полем иона. Среди ближайших к иону (особенно Ыа+) молекул воды преобладает ориентация, в которой неподеленная электронная пара молекул воды направлена к иону [386, 413]. Впрочем, детальная картина распределения ориентаций молекулы воды по отношению к иону зависит от выбранной модели распределения электростатических зарядов в молекуле [414]. [c.147]

    Представления о донорно-акцепторных связях дают возможность объяснить эти соотношения следующим образом. Одним из отличий атома хлора от атома фтора является наличие у первого свободных орбит З -подуровня, которые придают атомам хлора способность служить акцепторами неподеленных электронных пар. В молекуле СЬ между атомами хлора, кроме указанной обычной ковалентной связи, образуются еще две донорно-акцепторные связи, в одной из которых донором служит первый атом хлора, в другой — второй атом хлора (нумерация, разумеется, произвольная) . Молекулу СЬ можно было представить в виде С1. С1. [c.69]

    Для вычисления формальных зарядов на атомах в молекуле каждому атому приписывают по одному электрону от каждой ковалентной связи, образуемой парой электронов с участием данного атома, плюс все его неподеленные электронные пары. Тогда формальный заряд на атоме совпадает с зарядом, который он имел бы, если бы стал изолированным ионом с таким же числом валентных электронов  [c.469]

    Эти три молекулы являются изоэлектронными в них содержится одинаковое число электронов. Наличие в каждой из них восьми валентных электронов вокруг центрального атома иллюстрирует правило октета. В СН все восемь электронов попарно вовлекаются в образование связей, однако в двух остальных молекулах имеются неподеленные электронные пары. В аммиаке три связывающие электронные пары и одна неподеленная пара, а в молекуле воды две связывающие пары электронов и две неподеленные пары. [c.471]

    Геометрическая конфигурация атомов в молекуле зависит от направлений химических связей каждого атома в пространстве. Направление же химических связей определяется типом АО и МО. На рис. 5 приведены ожидаемые равновесные геометрические конфигурации молекул в зависимости от числа связывающих электронных пар и числа неподеленных электронных пар. Для определения равновесной геометрической конфигурации молекулы следует установить число сг- и я-связей, число свободных пар электронов, не участвующих в химических связях. Пользуясь рис. 5, можно установить равновесную геометрическую конфигурацию атомов в молекуле. [c.16]

    Теория локализованных молекулярных орбиталей для молекул с неподеленными электронными парами 559 [c.651]

    Н. Сиджвиком и Г. Пауэллом, а в 1957 г. усовершенствован Р. Гиллеспи и Р. Найхолмом. Развитый ими подход получил название метода отталкивания валентных электронных нар (ОВЭП) его суть сводится к утверждению, что связывающие электронные пары и неподеленные электронные пары каждого атома в молекуле должны принимать пространственное расположение, которое минимизирует отталкивание всех электронных пар, окружающих данный атом. [c.491]


    Конечно, тут открывается большой простор для фантазии теоретика (деформируй отдельные электронные облака атомов молекулы так, или почти так, как хочешь, благо математика это позволяет ). Можно сосредоточить (локализовать) электронную плотность частично на атомах (в виде электронных пар внутренних оболочек атомов или неподеленных электронных пар валентной оболочки), а частично на химических связях (локализация электронов в поле двух ядер отвечает двухцентровому взаимодействию атом — атом, которое описывается классической символикой валентного штриха), а можно пользоваться и делокализованными орбиталями, охватывающими в принципе все атомные ядра молекулы. Разумный теоретик стремится воспользоваться этой свободой для того, чтобы построить модель, приемлемую для химика и пригодную для описания данного класса свойств. [c.210]

    Образование ковалентной связи может иметь и донорно-акпеп-торный механизм. В этом случае атом-донор предоставляет двух-электрОШюё" облако, а атом-акцептор - свободную орбиталь. Дон но-акцепторные связи, называемые также координационными возни1 1ЮТ, например, при образовании ионов [Ад(ЫНз)21 , [2п(NHз)4] , [СО(ЫНз)д] и др., в которых азот молекулы аммиака, обладая неподеленной электронной парой, выполняет функцию донора, а ионы Н , Ag, и Со — функцию акцептора. [c.47]

    В этой реакции взаимодействие происходит благодаря наличию в молекуле аммиака неподеленной электронной пары. Эта электронная пара осуществляет связь между атомами азота и водорода в ионе аммония. [c.251]

    В настоящее время выявляется участие донорно-акцепторных связей и при образовании некоторых обычных несложных молекул. Так, в молекуле 5Рб атомы серы, имея по 6 связей, могут принимать неподеленные электронные пары атомов фтора, используя остающиеся пустые орбиты Зй-подуровня. [c.69]

    Завершая обсуждение структур с СЧ = 5, рассмотрим такие молекулы, в которых к центральному атому присоединены неодинаковые атомы. Примерами могут служить СНзРР и ОРд. В каждой из этих молекул наименее электроотрицательные группы занимают экваториальные положения и вызывают отклонения от идеальных значений валентных углов 90 и 120°, подобные вызываемым наличием неподеленных электронных пар. Вот почему наблюдаются следующие структуры  [c.496]

    Пример сопоставления молекул NH3 и NP3 демонстрирует важную роль в определении величины д1шольных моментов молекул неподеленных электронных нар. В молекуле NH3 диполи отдельных связей N—Н, имеющих отрицательный конец у атома азота, усиливаются влиянием неподеленной sp -гибрндной пары электронов атома азота. В результате дипольный момент всей молекулы оказывается сравнительно большим. В молекуле NP3 дипольные моменты связей N—Р с положительным концом у атома азота в значительной Teneini компенспруются за счет момента неподеленной электронной пары, направленного в сторону, противоположную моментам связей. [c.252]

    Причиной молекулярной ассоциации в водных растворах и многих жидкостях часто является возникновение водородной связи между соприкасающимися полярными частями молекул, содержащих, например, гидроксильные группы (см. стр. 164). Такая ассоциация проявляется также и при адсорбции на адсорбентах, содержащих на поверхности гидроксильные группы, например при адсорбции воды, спиртов, аммиака, аминов и т. п. на поверхностях гидроокисей, т. е. на гидроксплированных поверхностях силикагелей, алюмогелен, алюмосил икатных катализаторов и т. п. адсорбентов. Поверхность силикагеля покрыта гидроксильными группами, связанными с атомами кремния кремнекислородного остова. Вследствие того что электронная -оболочка атома кремния не заполнена, распределение электронной плотности в гидроксильных группах поверхности кремнезема таково, что отрицательный заряд сильно смеш.ен к атому кислорода, так что образуется диполь с центром положительного заряда у атома водорода, размеры которого невелики. Часто молекулы адсорбата, обладающие резко смеш,енной к периферии электронной плотностью или неподеленными электронными парами (например, атомы кислорода в молекулах воды, спиртов или эфиров), образуют дополнительно к рассмотренным выше взаимодействиям водородные [c.496]

    В молекуле аммиака атом азота находится в состоянии 5/> -гиб-риднзации, причем на одной из его гибридных орбиталей находится неподеленная электронная пара. Поэтому при донорноакцеиторном взаимодействии молекулы NH3 с ионом Н+ образуется ион NH i имеющий тетраэдрическую конфигурацию. Аналогично построен комплексный ион BF ]- здесь донором электронной пары служит анион р-, а акцептором — атом бора в молекуле ВРз, обладающий незанятой орбиталью внешнего электронного слоя и переходящий при комнлексообразовании в состояние sp -гибридизацни. [c.598]

    В молекуле ноды электронные орбитали двух р-электронов атома кислорода также, казалось бы, должны быть расположены под углом 90°. В действительности НОН = 104,5°, т. е. значительно ближе к тетраэдргческому. Очевидно, что и в этом случае некоторое искажение структуры молекулы воды связано с 5р -гибридизацией, в которой участвуют орбитали двух участвующих в образовании связей й двух неподеленных пар атома кислорода. [c.54]

    В этой главе мы прошли долгий путь рассуждений, начав с рассмотрения сравнительной химии элементов В, С, N и Si. Углерод несомненно играет особую роль, обусловленную наличием у его атомов одинакового числа валентных электронов и орбиталей, отсутствием отталкивающих неподеленных электронных пар и способностью образовывать двойные и тройные связи. Простые алканы, или соединения углерода и водорода, с простыми связями иллюстрируют многообразие соединений, которые может образовывать углерод благодаря своей способности создавать длинные устойчивые цепи. Алкилгалогениды - это своеобразный мостик от алканов с их сравнительно низкой реакционной способностью к изобилию производных углеродов спиртам, простым эфирам, альдегидам, кетоиам, сложным эфирам, кислотам, аминам, аминокислотам и соединениям других типов, которые не обсуждались в данной главе. Способность углерода образовывать двойные и тройные связи была проиллюстрирована на примере алкенов и алкинов, она играет чрезвычайно важную роль при образовании сопряженных и ароматических молекул. [c.337]

    Механизм образования связи — обменный или донорно-акцеп-торный — не влияет на тип гибридизации электронных орбиталей атомов-партнеров. Линейная молекула ВеС12 может образоваться в газовой фазе как из атомов Ве и С1, так и из ионов Бе2+ и С1 . В последнем случ ае ион Ве + (акцептор) предоставляет вакантные 2х- и 2р-орбитали, а ионы С1 (доноры) — неподеленные электроны Оба механизма в конечном итоге приводят к одному и тому же 5р-гибридному состоянию. [c.54]

    Применение метода ОВЭП к конкретным многоатомным молекулам начинается с подсчета числа неподеленных электронных пар их цедтраль-ного атома и числа связанных с ним атомов., Будем называть суммарное ч"исло атомов, связанных с центральным атомом молекулы, и его неподеленных электронных пар стерическим числом (СЧ). Если у центрального атома А нет неподеленных пар электронов и его СЧ определяется просто числом связанных с А атомов X, то наблюдаемое геометрическое строение молекул согласуется с указанным на рис. 11-2. В каждом из примеров, при- [c.491]

    В самом деле, что заставляет теоретиков, занимающихся изучением строения молекул, немало сил тратить на обсуждение проблем локализации молекулярных орбиталей, выбора оптимального анализа заселенностей и т. д. Ведь в принципе расчет можно провести, используя делокализованные (канонические) молекулярные орбитали, или х<е ограничиться одноцентровым базисом, в результате чего при стандартном анализе заселенностей вся электронная плотность окажется отнесенной к одному атому молекулы. Однако в обоих случаях результаты расчетов не удается интерпретировать в рамках традиционных химических представлений, т. е. в терминах химических связей, неподеленных электронных пар и т. д. И дело не только в необходимости учета старых, давно известных фактов типа аддитивности и трансферабель-ности многих молекулярных свойств, дело еще в стремлении согласовать квантовомеханическое описание с определенным исторически сложившимся стилем химического мышления. Но мы слишком забежали вперед, вернемся к нашей теме и посмотрим, как в квантовой химии рождается понятие молекулярной структуры. [c.106]

    Выражения тетраэдр и т. п. указывают фигуру, к вершине которой направлены оси симметрии электронных облаков, если рассматриваемый атом помен1,ен в центре фигуры, которую образуют другие атомы. Иную конфигурацию образуют атомы, если в молекуле имеются электронные пары, не образующие связь — неподеленные пары. Так. молекула аммиака при тетраэдрическом расположении четырех электронных пар вокруг атома азота [c.69]

    Объяснение комплексообразования методом валентных связей. Мы знаем, что ион образуется благодаря наличию неподеленной электронной пары в молекуле аммиака. Его формирование можно рассматривать как присоединение молекулы ЫНз к идну водорода. Аналогично можио рассматривать присоединение молекул аммиака к ионам металлов, приводящее к образованию аммиакатов, например Си+2ЫНз = [Си ( ЫИз)2]+, + + 4ЫНз =-[Zп( NHз)1] +. 1 [c.121]

    Атомы кислорода, содержащиеся в молекулах воды, при взаимодействии с катионами ионных кристаллов или с нейтральными атомами могут образовать донорио-акцепторную связь, играя при этом роль доноров электронов за счет своих неподеленных электронных пар. Этому способствует при взаимодействии атомов кислорода с катионами гголяризуюш,ее действие катиона на молекулы воды. [c.141]

    Решение. Всего в молекуле ВеНз четыре электрона, участвующих в образовании а-связей. Связывающих электронных пар две. Неподеленных электронных пар нет. Из схемы, приведенной на рис. 5, видно, что равновесная геометрическая конфигурация молекулы ВеНа линейная. Молекула относится к точечной группе симметрии С ,. [c.19]

    В молекуле фтороводорода у атома фтора имеются три неподелен-пые электронные пары, в молекуле воды у атома кислорода — две неподеленные электронные пары, в молекуле аммиака у атома азота — одна неподелеыная пара, а в молекуле метана неподелен-пых электронных пар нет. В этих молекулах связи между атомами простые, или одинарные. В молекулах, включающих в свой состав многовалентные атомы, связи могут быть кратными, как, например, в молекуле диоксида углерода — двойными  [c.47]


Смотреть страницы где упоминается термин Молекула без неподеленных пар электронов: [c.114]    [c.534]    [c.139]    [c.217]    [c.610]    [c.530]    [c.562]    [c.565]    [c.35]    [c.150]    [c.359]    [c.22]    [c.138]   
Неорганическая химия (1987) -- [ c.146 , c.149 ]




ПОИСК







© 2025 chem21.info Реклама на сайте