Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гипохлориты, окисляющее действие

    Действие окислителей и восстановителей. Катионы бария, стронция, кальция, магния, алюминия устойчивы по отношению к окислителям и восстановителям. Ионы марганца, хрома (III), железа (И) и (III) и висмута (III) вступают в реакции окисления и восстановления как в кислой, так и щелочной средах. В щелочной среде хлор, бром, перекись водорода, гипохлорит, двуокись свинца, перманганат окисляют ионы хрома (III) в хромат, а в кислой среде — в бихромат. [c.39]


    Действие сильных окислителей [43]. Вторичные спирты легко окисляются в кетоны бихроматом в кислой среде [44] при комнатной температуре или небольшом нагревании. Это наиболее распространенный реагент, хотя применяют также другие окислители (например, КМп04, Вгг, МпОг, тетроксид рутения [45] и т. п.). Раствор хромовой и серной кислот в воде известен под названием реактива Джонса [46]. Титрование реактивом Джонса ацетонового раствора вторичных спиртов [47] приводит к быстрому их окислению до кетонов с высоким выходом, причем при этом не затрагиваются двойные и тройные связи, которые могут присутствовать в молекуле субстрата (см. реакцию 19-10), и не происходит эпимеризации соседнего хирального центра [48]. Реактив Джонса окисляет также первичные аллильные спирты до соответствующих альдегидов [49]. Широко применяются также три других реактива на основе Сг(У1) [50] дипиридинхром (VI)оксид (реактив Коллинса) [51], хлорохромат пиридиния (реактив Кори) [52] и дихромат пиридиния [53]. МпОг также отличается довольно специфическим действием на ОН-группы и часто используется для окисления аллильных спиртов в а,р-ненасыщенные альдегиды и кетоны. Для соединений, чувствительных к действию кислот, применяют СгОз в ГМФТА [54] или комплекс СгОз — пиридин [55]. Гипохлорит натрия в уксусной кислоте полезен для окисления значительных количеств вторичных спиртов [56]. Используют и окислители, нанесенные на полимеры [57]. Для этой цели применялись как хромовая кислота [58], так и перманганат [59] (см. т. 2, реакцию 10-56). Окисление перманганатом [60] и хромовой кислотой [61] проводят также в условиях межфазного катализа. Межфазный катализ особенно эффективен в этих реакциях, поскольку окислители нерастворимы в большинстве органических растворителей, а субстраты обычно нерастворимы в воде (см. т. 2, разд. 10.15). При проведении окисления действием КМп04 использовался ультразвук [62]. [c.270]

    Процесс с гипохлоритом часто применяется для бензинов прямой гонки и редко для крекинг-продуктов. Хлорирования углеводородов избегают применением щелочных растворов. В этих условиях гипохлорит действует, главным образом, на сернистые соединения, окисляя их в сульфоновые кислоты и сульфоны. Сероводород как вещество, окисляемое в серу, в начале удаляется обработкой щелочью. Элементарная сера и тиофены не реагируют с гипохлоритом. Ненасыщенные углеводороды, образующие смолы, не поддаются действию гипохлорита в условиях, применяемых для удаления сернистых соединений. Образовавшиеся сульфоновые кислоты и сульфоны частично растворя- [c.353]


    Для определения сульфида кроме иода рекомендованы и другие окисляющие агенты, бром, гипохлорит, иодат, гексацианоферрат (1П), перманганат и перйодат. В большинстве случаев никаких преимуществ по сравнению с иодом они не имеют. Большинство указанных реагентов должно быть стандартизировано каким-либо независимым методом. Исключение составляет N-бромсукцинимид [33]. Этот реагент окисляет сульфид до элементной серы. Раствор реагента устойчив в течение нескольких дней при хранении в прохладном темном месте. Анализируемый раствор с добавкой раствора иодида калия титруют раствором N-бромсукцинимида, используя в качестве индикатора крахмал. Механизм действия этого реагента описывается следующим образом. Реагент селективно окисляет иодид до иода, который в свою очередь реагирует с сульфидом  [c.567]

    Гипохлорит-ион СЮ" в отличие от хлора является сильным нуклеофильным реагентом, легко взаимодействующим с хиноидными и другими еноновыми структурами, образовавшимися, например, при окислении лигнина хлором (схема 13.11, а). Нуклеофильное присоединение гипохлорит-ионов приводит к образованию интермедиатов с оксирановой структурой, которая далее разрушается под действием щелочи или окислителя с выделением карбонил- и карбоксилсодержащих фрагментов лигнина. Окисляются также и фенольные единицы лигнина. Этому предшествует их хлорирование (см. схему 13.11, б). Поскольку хлорноватистая кислота - слабый электрофил, хлорируются только структуры, способные образовывать карбанионы. Хлорированные фрагменты в этих условиях быстро окисляются до о- и и-хинонов, которые затем и реагируют с гипохлорит-ионами. Деструкция лигнина протекает медленно, большая его часть окисляется до простых органических кислот и СО2. Окислительная деструкция полисахаридов на этой стадии отбелки, как и при отбелке хлором, также протекает по радикальному механизму. [c.488]

    Когда активность насадки падает и разложение амальгамы заметно ухудшается, необходимо заменить насадку новой, а старую регенерировать. Для этого вначале ее обрабатывают разбавленной (5—10%-ной) соляной кислотой, затем промывают водой и, наконец, раствором гипохлорита натрия. Под действием соляной кислоты растворяются гидроокиси и карбонаты кальция и магния, покрывающие поверхность графита. Гипохлорит натрия окисляет верхний слой графита с образованием СОг, в результате чего поверхность насадки становится более развитой. Такая обработка графита приводит к восстановлению его первоначальной активности. [c.213]

    При действии сильных окислителей, каким является гипохлорит, цианидный комплексный ион никеля окисляется с образованием бурого осадка Ы1(ОН)з  [c.243]

    Полученные экспериментальные данные позволяют расположить в ряд по устойчивости против действия Н -ионов все изученные окислители, кроме трех—гипохлорита, перманганата и перйодата. Поскольку эти вещества окисляют иодид при pH >9, когда протекает гидролиз иода, то сравнение их между собой оказывается затруднительным. Поэтому было изучено действие этих окислителей на более слабый восстановитель — бромид. Концентрация окислителей в реакционной среде была 0.01 н., а бромистого калия — 0.3 н. Время наблюдения 5 минут. Оказалось, что перманганат и перйодат практически перестают действовать на бромид при pH 4.0, тогда как гипохлорит заметно окисляет бромид еще при pH 9. [c.1258]

    Степень действия гипохлорита находится, таким образом, в непосредственной зависимости от количества свободной щелочи, присутствующей в раство1ре. Как мы уже видели, действие щелочи вызывает замедление окисления сернистых соединений, но если гипохлорит обладает сильной кислотностью, то он де йствует уже не как окисли-тейь, а как хлорирующий агент, что является таюке чрезвычайно нежелательным. Употребляемые растворы содержат в себе щелочь в количестве, необходимом для стабильности гипохлоритов. [c.201]

    Второй вариант описанного метода анализа сводится к окислению бромид-иона хлорной водой, содержащей гидрат хлора, удалению избытка окислителя действием фенола и иодометриче-скому определению образовавшегося бромат-иона [873]. Как и в первом варианте, здесь иодид-ионы окисляются совместно с бромид-ионами, но, в отличие от него, устраняются те источники ошибок, которые обусловлены примесями в гипохлорите. Однако большинство авторов ориентируется на получение чистого гипохлорита и пользуется первым вариантом метода. [c.86]

    Эти равновесия осложняются медленным превращением гипохлорита в хлорид и хлорат, с происходящим в результате этого уменьшением активного хлора для отбелки. Эти побочные реакции происходят быстро для гипобро-мидных и еще быстрее для гипоиодидных систем. Знание того [344], что константа гидролиза хлора в воде равна 4,5ХЮ , а константа диссоциации хлорноватистой кислоты [345, 346, 347] около 4ХЮ , создает возможность путем вычисления определить, что составы разбавленных растворов, употребляемых на практике (содержащих больше или меньше 0,8 % активного хлора) меняются в зависимости от pH, как указано ранее. Свыше 95% активного хлора существует в виде недиссоциированной хлорноватистой кислоты в пределах рНотЗ до 6 при pH 9 около 97% присутствует в качестве иона гипохлорита, а в кислом растворе при pH 2 гидролиз дает около 32% активного хлора [82]. То, что скорость, при которой целлюлоза восстанавливает 0,04 и. гипохлорит натрия больше примерно в 10 раз при pH 7, чем при pH 4,6 или pH 9, говорит о том, что недиссоциированная хлорноватистая кислота легче окисляет целлюлозу, чем ион гипохлорита или активный хлор [66, 84, 348]. Более медленная реакция в кислом растворе сильно катализируется ярким дневным светом [79], реакция при pH 7—ультрафио-летовылш линиями в ртутном спектре [341], а окисление в каустической соде мерсеризующей концентрации, также является быстрым [66]. В результате этих окислений из отбеливаемых примесей образуются слабые органические кислоты, а из слабой хлорноватистой кислоты — сильная соляная кислота. Следовательно, щелочная белильная жидкость во время использования имеет тенденцию приблизиться к опасным пределам pH от 6 до 8, где переокисление, ведущее к деградации целлюлозы, происходит быстро [345]. Вследствие этого было тщательно изучено [345] как с теоретической [82], так и с практической [83] точек зрения, буферное действие присутствующего натриевого или кальциевого основания вместе с эффективностью добавления карбоната натрия или кальция, бората натрия, фосфатов, ацетата, цинкового и алюминиевого буферов. Однако отбелка может быть безопасно и быстро выполнена вблизи нейтральной точки при соблюдении некоторых определенных условий [83]. [c.186]


    Гипохлорит натрия осаждает в присутствии едких ще-лочей весь никель в виде буровато-черной гидрооксии никеля Ni(OH)з. Сперва под действием едкой щелочи образуется гидрат закиси никеля, который затем окисляется гипохлоритом в гидроокись никеля  [c.264]

    Броматы вызывают затруднения в определенных случаях применения гипобромита, хлораты .е, по-видимому, не оказывают никакого действия. Например, при определении аммиака наличие бромата приводит к повышенным результатам вследствие образования окислов азота в то время как при генерации гипобромита 56 gjiy происходит количественное окисление до азота. Окислы азота образуются в том случае, когда гипохлорит применяется без добавления бромида. Показано также, что наличие бромата приводит к повышенным результатам и при определении тиоцианата и тиосульфата. [c.476]

    Гипохлорит иатрия является селективным окислителем, он окисляет преимущественно аммиак, мочевину, аминокислоты и другие вещества и, в меньшей степени, углеводы. Если параллельно с определением- хлороемкости проводить определение перманганатной окисляемости, то это позволяет составить некоторое представление о природе загрязнений сточной воды. Действие NaO l будет еще более селективным, если анализируемую воду кипятят только 1 мин и при анализе сильно загрязненных вод вместо 0,02 н. раствора NaO l применять 0,1 н, раствор. В этих условиях действие гипохлорита на углеводы ослабляется, а на азотсодержащие соединения остается без изменения [197]. [c.79]

    Методы удаления органических веществ из вод можно разде-лить на две группы окислительные и адсорбционные. В качестве окислителей органических примесей природных вод используются хлор, озон, перманганат калия, т. е. реагенты, применяемые и для обеззараживания воды. В процессе обработки воды хлором в основном идут реакции окисления и замещения, которые при оптимальной дозе окислителя сопровождаются образованием соединений, не имеющих запаха, цвета и вкуса. Хлор легко окисляет альдегиды, спирты, аминокислоты, действует на некоторые компоненты, вызывающие цветность воды (апокренаты железа). Кренаты железа окисляются хлором хуже. Обесцвечивание воды идет наиболее эффективно при pH 7,5—8,0, основная роль при этом отводится хлорноватистой кислоте и гипохлорит-иону, образующимся при гидролизе хлора в воде. Органические примеси окисляются только тогда, когда окислительный потенциал введенного реагента будет достаточным для протекания реакции с органическим веществом. Так, применение хлора является не всегда эффективным для окисления веществ, вызывающих запахи и привкусы воды. Количество хлора, необходимое для их окисления, выше оптимальной дозы хлора для обеззараживания воды. [c.147]

    В некоторых случаях хлорирование проходит особенно энергично и гладко, когда действуют хлором в момент образования. Хлор получают в самой реакционной смеси, окисляя соляную кислоту такими окислителямя, как например гипохлорит (хлорирование ацет-о-толунднда), хлорат или азотная кислота (получение хлоранила с применением царской водки, см. стр, 133). [c.65]


Смотреть страницы где упоминается термин Гипохлориты, окисляющее действие: [c.143]    [c.143]    [c.65]    [c.689]    [c.189]    [c.344]    [c.310]    [c.384]    [c.310]    [c.344]   
Лекционные опыты и демонстрации по общей и неорганической химии (1976) -- [ c.175 ]




ПОИСК





Смотрите так же термины и статьи:

Гипохлориты



© 2025 chem21.info Реклама на сайте