Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал абсолютный процесс возникновения

    VII. 1, показывают, что выводы теории Нернста находятся в противоречии с опытом, несмотря на то, что эта теория дает количественную интерпретацию зависимости ЭДС от концентрации веществ, участвующих в электродных процессах. Противоречивость теории Нернста привела к возникновению проблемы абсолютного скачка потенциала, в которой ставится вопрос о величине отдельного, гальвани-потенциала на границе электрод — раствор. [c.187]


    Обычно стеклянный электрод делают в виде шарика, в который вводят хлор-серебряный электрод и раствор соляной кислоты. Таким образом, получается полуэлемент, который погружают в исследуемый раствор (рис. 9). Потенциал стеклянного электрода представляет собой разность потенциалов на обеих сторонах стеклянной мембраны. Если бы обе стороны мембраны были абсолютно идентичны, то при применении одинаковых электродов сравнения (цепь 1.33) э. д. с. цепи была равна нулю. Однако вследствие потери щелочи при тепловой обработке в процессе изготовления стеклянного шарика, дегидратации поверхностного слоя вследствие высушивания или вследствие продолжительной выдержки в дегидратирующем растворе, вследствие механического разрушения поверхностного слоя или химического протравливания щелочами или фтористым водородом поверхности стеклянной мембраны различны, что приводит к возникновению так называемого потенциала асимметрии. Этому способствует также неодинаковое механическое напряжение на двух сторонах стеклянной поверхности. [c.21]

    При циклическом нагружении сплавов потенциал после первоначального всплеска с ростом числа циклов несколько облагораживается, плавно уменьшаясь по абсолютной величине (участок II), принимая спустя некоторое время установившееся значение и стабилизируясь в более отрицательной области III по сравнению с потенциалом ненагруженного образца. Очевидно, наряду с термодинамической активацией образца в данном случае немаловажную роль играет повышение электрохимической гетерогенности металла в ходе усталостного нагружения вследствие интенсивного накопления в его объеме повреждений, скопления вакансий и дислокаций, выхода их на поверхность, формирования грубых полос скольжения и зарождения усталостных трещин. Указанные процессы сопровождаются образованием новых поверхностей, несколько нарушающих сплошность пленок, разблагораживанием потенциала, возникновением менее совершенных защитных пленок на деформированной поверхности, в результате чего электродный потенциал удерживается в более отрицательной области. [c.74]

    Стеклянному электроду присущ, так называемый потенциал асимметрии. Потенциалом асимметрии называется собственная добавочная э. д. с. стеклянной мембраны, налагающаяся на разность потенциалов, возникающую вследствие разности pH растворов, находящихся по обе стороны мембраны. Потенциал асимметрии может иметь место и при одинаковых pH растворов и его возникновение зависит от неодинакового натяжения стекла с обеих сторон мембраны, от изменения химических свойств поверхности стекла в процессе приготовления электрода и от способа обработки электрода после его приготовления. После выдерживания электрода в воде или в растворе электролита потенциал асимметрии приобретает более или менее постоянное значение (изменение потенциала асимметрии после такой обработки электрода составляет на протяжении долгого времени всего несколько. милливольт). Абсолютная величина потенциала асимметрии зависит от внутреннего сопротивления электрода, от pH раствора и от температуры. Чем больше внутреннее сопротивление электрода (чем толще стенки мембраны), тем больше потенциал асимметрии. С увеличением pH раствора он увеличивается, а с увеличением температуры — уменьшается. Потенциал асимметрии стеклянных электродов, приготовленных из употребляемого для этой цели стекла (ГОИ, Мак-Иннеса), невелик (5—12 мв). Однако, несмотря на малую величину потенциала асимметрии, ее необходимо учитывать при измерении pH, так как наложение потенциала асимметрии даже при колебаниях его от 2 до 12 мв может дать ошибку в 0,03—0,2 pH. Это обстоятельство заставляет прибегать к повторной градуировке электрода перед каждой серией определения pH. [c.85]


    Попытка количественной оценки вклада каждого из этих частных процессов в суммарную э. д. с. содержалась в химической или осмотической теории гальванического элемента, разработанной главным образом Нернстом и его школой. Согласно этой теории, при погружении металла в раствор, содержащий его ионы, некоторое количество ионов металла переходит из металла в раствор или в обратном направлении, в результате чего металл и раствор взаимно заряжаются. Это приводит к возникновению разности (скачка) потенциалов между металлом и раствором. Аналогичный скачок потенциалов возникает при погружении в раствор другого металла. Таким образом э.д.с. элемента можно представить как разность двух скачков гальвани-потенциала (ф1 и фг) на границах раствор/металл 1 и раствор/металл 2. В том случае, когда металл неза-ряжен, соответствующий скачок потенциала равен нулю. Поэтому предполагалось, что вводя в цепь гальванического элемента такую внешнюю разность потенциалов (в современной терминологии — потенциал нулевого заряда), при которой металл одного из электродов становится незаряженным, можно найти абсолютный нуль потенциала и тем самым установить абсолютный потенциал второго электрода. Таким образом проблема разделения э.д.с. на слагаемые, характеризующие отдельные процессы, происходящие в разных частях гальванического элемента, была сведена к задаче определения абсолютных электродных потенциалов. При этом вклад в э.д.с. процесса, происходящего на границе раздела фаз металл 1/металл 2, считался пренебрежимо малым. [c.150]

    Кривые потенциальной энергии ионов водорода в растворе и Н-атомо1В, адсорбированных поверхностью катода, на котором происходит разряд водородных ионов, показаны на рис. 21, Величина фР представляет полное смещение уровнен энергии ионов в растворе, наступающее при возникновении отрицательного скачка потенциала на границе электрод—раствор. Соответственно этому абсолютное значение произ)ведения (1—а)фр измеряет снижение энергии активации процесса разряда Н-ионов из раствора, а офр определяет увеличение энергии активации противоположного процесса ионизации водорода. Принимая все это во внимание, для скорости разряда Н-ионов будем иметь (с учетом отрицательного знака ф-потенциала) - [c.73]

    Во всех случаях причиной возникновения скачка потенциала является окислительно-Босстановительный процесс на поверхности электродов как металлических, так и неметаллических (газовых, графитового и пр.). Следовательно, электродный потенциал характеризует окислительно-восстановительные свойства системы. К сожалению, ни теоретически рассчитать, ни экспериментально определить абсолютную величину электродного потенциала не удается. Если (задавшись целью определить потенциал металла по отношению к раствору его соли) присоединить электрод к вольтметру и опустить другой конец провода, идущего от прибора, в тот же раствор, то измерим не электродный потенциал металла, а разность потенциалов между металлом электрода и металлом провода. Какую бы пару электродов не взяли, узнаем лишь разницу потенциалов между этими электродами. [c.154]

    Результат произведенного нами выше вычисления находится в полном согласии с высказанным ранее предположением, согласно которому главным местом возникновения э. с. в элементах является место соприкосновения электрода с жидкостью. В частности, была бы непонятна применимость формулы Гельмгольца (стр. 166), в которой Q обозначает тепловой эффект происходящих в элементе химических реакций, если бы скачок потенциала в месте соприкосновения обоих металлов играл бы значительную роль. Также оставалось бы непонятным, какие процессы в месте соприкосновения обоих металлов мы должны были бы рассматривать, как источник электрической энергии, получаемой при работе элемента. Но-ве шие измерения, согласно которым контактные разности потенциалов в месте соприкосновения двух металлов достигают 0,1—0,2 вольт, нельзя считать безупречными. Самый вывод, однако, не является правильным для всех случаев, что следует из подробного рассмотрения экспериментальных данных мы находим, что э. с. не во всех случаях, а лишь при некоторых комбинациях металлов и в ограниченных пределах температур пропори юнальна абсолютной температуре. [c.215]

    Тот факт, что процессы обмена со слоем играют роль как при хемосорбции, так и при десорбции газов — в особенности на полупроводниковых твердых веществах типа окислов и сульфидов, — известен уже давно по изменению проводимости таких полупроводников в атмосфере различных газов. С точки зрения электронных дефектов можно подразделить полупроводниковые катализаторы на катализаторы п-типа и р-типа, за исключением собственных полупроводников (р-/г-проводимость). Катализатор п-типа характеризуется наличием свободных электронов е, т. е. электронов в зоне проводимости, и присутствием, по закону электрической нейтральности, в эквивалентной концентрации анионных вакансий или металлических ионов в междоузлиях. Катализатор р-типа характеризуется соответствепио наличием недостатка электронов , т. е. дырок в валентной зоне, с эквивалентной концентрацией незанятых катионных узлов. За исключением случаев жестких соотношений при реакции (как, например, для Нг на NiO), в случае катализаторов п- типа будет происходить обмен электронами только между зоной проводимости и соответствующей молекулой, а в случае катализаторов р-типа — обмен электронами только между валентной зоной и находящимся на поверхности газом. При этом характерный для каждого полупроводника п- или р-типа обменный уровень вещества слоя является потенциалом Ферми или, иначе говоря, электрохимическим потенциалом т]- или т]+ свободных электронов или дырок соответственно. Как показано ниже на примере простой реакции, появление в зоне и уход или эмиссия электронов из валентной зоны или зоны проводимости катализатора, так же как невозможность электронного обмена, определяется абсолютным значением т] и и энергетического уровня попадающей на поверхность или находящейся на ней молекулы газа. В настоящем изложении мы вначале пренебрежем электрическим диффузионным потенциалом, всегда появляющимся вблизи поверхности в результате возникновения объемных зарядов. Влияние диффузионного потенциала Vd, зачастую определяющего течение реакции, будет обсуждено в заключение, исходя из известного соотношения г] + = j V, где J.I — химический потенциал в электрон-вольтах, а К — электрический потенциал. [c.219]


    Е с а на границе раствор — металл А написать не по часовой стрелке, а так же, как и для границы металла В, т. е. от металла к раствору, то Еав = Евс1—Е Ас т.е. разность абсолютных скачков потенциалов двух металлов на границе с раствором равна контактному потенциалу Вольта. Однако рабочие функции для различных металлов при их перенесении из вакуума в раствор будут меняться весьма существенно и неодинаково для двух взятых металлов вследствие различия электрохимических процессов обмена зарядов с раствором для разных металлов и также вследствие неодинаковой адсорбции заряженных ионов или диполей на их поверхностях раздела с раствором. Контактный потенциал Вольта в этом случае остается неуравновешенным на величину разности смещения абсолютных скачков потенциалов металла А и металла В, т. е. разности изменения их рабочих функций при переносе этих металлов из вакуума в электролит. Если новые величины абсолютных скачков потенциалов металлов на границе с электролитом обозначить через величины Ес,а и Евс, (см. рис. 63,б),тобудемиметь лв+д. с. 0. Таким образом, источником возникновения э, д. с. элемента является именно эта добавочная разность потенциалов, получающаяся в цепи вследствие контакта металлов с электролитом. Поэтому установление электродных потенциалов, т. е. дополнительных скачков потенциала на границе с раствором, вследствие обмена (перехода) зарядов между металлом и раствором, представляет интерес как основная причина, вызывающая появление э. д. с. гальванического элемента и в частном случае коррозионного гальванического элемента. [c.126]


Смотреть страницы где упоминается термин Потенциал абсолютный процесс возникновения: [c.184]    [c.258]    [c.15]    [c.253]    [c.267]    [c.44]    [c.362]    [c.76]   
Физическая химия Том 2 (1936) -- [ c.362 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал абсолютный

Потенциал абсолютный Абсолютный

Потенциал возникновение

возникновение



© 2025 chem21.info Реклама на сайте