Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флуоресценции внутреннее

    Колебательная релаксация Флуоресценция Внутренняя конверсия Интеркомбинационная конверсия Колебательная релаксация Фосфоресценция [c.312]

    Скорости реакций (14), (15) и (16) соответственно записываются в виде [X ], [X ] и [X ] [( ], где буквой К с различными индексами обозначены постоянные соответственно для процесса флуоресценции, внутреннего тушения и тушения растворителем [c.123]


    Введем обозначения [Y] и [Z] для мольных долей соответственно У и Z к kf, ki tt kt[ ] с соответствующими индексами для обозначения параметров скорости (выраженных в сек ) флуоресценции, внутреннего тушения и безызлучательного переноса энергии. Для простоты рассмотрения опустим дополнительные возможные процессы тушения, например концентрационное тушение растворенного вещества, внешнее тушение растворителя растворенным веществом, тушение примесями или кислородом, хотя эти процессы легко могут быть учтены при полном теоретическом рассмотрении процесса. [c.164]

    Зависимость флуоресценции от температуры. В отсутствие тушителей эффективность флуоресценции фф определяется относительными скоростями излучательного процесса кф, с одной стороны, и безызлучательных процессов интеркомбинационной и внутренней йд конверсии, с другой. Скорость излучательного процесса не зависит от температуры, поэтому изменения фф отражают изменения кк и йд. Последние увеличиваются с ростом температуры, поскольку на верхние колебательные уровни состояния попадает все большая часть молекул и вероятность перехода через область пересечения потенциальных поверхностей возрастает. При пони ке-нии температуры обе константы скорости стремятся к предельным значениям, соответствующим интеркомбинационной или внутренней конверсии с самого нижнего, колебательного уровня Слабо флуоресцирующее вещество может стать при низкой температуре сильно флуоресцирующим. Зависимость выхода флуоресценции от температуры можно представить уравнением [c.62]

    Практической целью методов атомной спектроскопии при анализе вещества является качественное, полуколичественное или количественное определение элементного состава анализируемой пробы. Еще 25—30 лет назад эти задачи решались, по существу, лишь одним из методов — атомно-эмиссионным методом спектрального анализа в оптическом диапазоне спектра, В настоящее время достаточно широкое применение получили также методы анализа по атомным спектрам поглощения и флуоресценции в оптическом диапазоне, а также по эмиссионным и флуоресцентным спектрам в рентгеновском диапазоне. Во всех случаях в основе этих методов лежат квантовые переходы валентных или внутренних электронов атома из одного энергетического состояния в другое. [c.53]

    Если осуществляется переход электрона с какой-то внешней электронной оболочки на вакансию внутренней оболочки, то при этом может происходить испускание кванта рентгеновского излучения. Это так называемая рентгеновская флуоресценция. Так, например, при А -захвате по схеме, показанной на рис. [c.138]


    Механизм возбуждения. Чтобы атом испустил квант рентгеновского излучения hv, ему необходимо сообщить энергию. Это можно осуществить облучением пробы потоком электронов эмиссионная спектроскопия) или рентгеновским излучением достаточной энергии рентгенофлуоресцентная спектроскопия). Практически ввиду более легкого осуществления используют только второй способ возбуждения. Его преимущество заключается еще в том, что возникающий спектр флуоресценции имеет только характеристические спектральные линии, в то время как на эмиссионный спектр накладывается спектр непрерывного излучения. В рентгенофлуоресцентной спектроскопии пробу облучают полихроматическим излучением рентгеновской трубки и наблюдают возникающее вторичное излучение. Для перемещения электрона с занимаемого им основного уровня необходимо, чтобы энергия поглощаемого рентгеновского кванта hv была по меньшей мере равна работе ионизации. Если поглощаемая энергия больше, то избыточная энергия высвобождается в виде кинетической энергии фотоэлектрона. По истечении 10 с ионизированный атом ступенчато переходит в основное состояние. Рассматривая уменьшение энергии электрона при его переходе с верхнего уровня на нижний, можно заметить, что рентгеновский квант излучается не при каждом электронном переходе. Эффективной в этом отношении оказывается только часть переходов (/ij). Остальное число переходов п — () вызывает эмиссию электронов из внешних электронных оболочек атома, поскольку они воспринимают всю энергию, освобождающуюся при осуществлении внутренних электронных переходов, и вследствие этого отрываются от атома оже-эффект). Под выходом флуоресценции W понимают отношение /if/n. Величина W для различных оболочек не одинакова и возрастает с увеличением атомного номера элемента. Зависимость выхода флуоресценции для /С-оболочки от атомного номера элемента можно представить следующей полу эмпирической формулой  [c.201]

    В этом случае график Штерна — Фольмера (зависимость 1//иа.г от [М]) будет иметь в точке пересечения значение (1-ЬА1/Л)/ погл и производную ikq[N. ]/A)[ j,onu поэтому kq/A нельзя определить без измерения / эл и /погл. Однако необходимо знать только отношение /изл//погл, а не абсолютные значения интенсивностей. Следует заметить, что если энергетические спектры возбуждения и излучения не идентичны, то необходимо измерять отношение потоков квантов, а не отношение потоков энергии. Отношение /изл//погл есть квантовый выход ф1 процесса люминесценции (фг — квантовый выход флуоресценции, фр — квантовый выход фосфоресценции), поэтому значение модифицированной кривой Штерна — Фольмера 1/ф —[М] в точке пересечения будет определять отношение скоростей радиационных и безызлучательных процессов. Следовательно, в идеальном случае можно определить скорость внутренней и интеркомбинационной конверсии в люминесцирующей системе. [c.88]

    Флуоресценция органических соединений обычно начинается с низшего возбужденного синглетного уровня 5), даже если изначально были возбуждены и более высокие синглетные уровни (т. е. 5а, 5з,. .., 5 ). По-видимому, существует интенсивная внутренняя конверсия с 5 на 5] с последующей колебательной релаксацией (возможно, процесс включает безызлучательные синглет-триплетные переходы через промежуточные триплетные состояния). Внутренняя конверсия должна [c.95]

    Одним из основных факторов, повлиявшим на углубление нашего понимания фотохимии, было развитие в течение нескольких последних десятилетий методов обнаружения и идентификации промежуточных продуктов фотохимических реакций. К ним относятся атомы, радикалы и ионы как первичные продукты фотолиза, возбужденные состояния этих первичных продуктов, возбужденные состояния, возникающие в первоначально поглощающем свет материале, включая триплетные, которые участвуют затем в флуоресценции, фосфоресценции и безызлучательных переходах (внутренняя конверсия и интеркомбинационная конверсия). Именно возможность изучения этих активных интермедиатов на коротких временных шкалах привела к появлению утонченных экспериментов с временным разрешением, которые рассматриваются в следующем разделе. Эксперименты с временным разрешением позволяют зондировать фотохимическую систему в заданный момент времени вскоре после поглощения кванта света, когда интересующие промежуточные продукты еще сохраняются. В этом разделе дается краткий обзор наиболее важных методик, пригодных для изучения промежуточных продуктов, с целью ввести читателей в круг обсуждаемых исследований с временным разрешением. Здесь не место для обсуждения теоретических основ спектроскопии будет лишь сделана попытка указать методики, которые могут быть с пользой применены. Одна из тем, которая многократно возникает, — это вопрос о том, как лазеры упростили более старые способы спектроскопических измерений и сделали возможными совершенно новые способы исследований. [c.194]


    При поглощении света молекула переходит из основного электронного состояния в возбужденное состояние. Поглотившая квант света Молекула либо переходит в основное состояние, излучая свет (флуоресценция), либо совершает такой переход без излучения (безызлучательный переход, или внутреннее тушение), либо претерпевает химическую реакцию (внешнее тушение флуоресценции). Названные процессы можно представить схемой  [c.64]

    Эффективность флуоресценции фу определяется конкуренцией излучательного процесса kf и безызлучательных процессов интеркомбинационной /г,,с и внутренней конверсии. Скорость излучательного процесса не зависит от температуры, поэтому изменения Ф/ с температурой связаны с изменением и Поскольку с увеличением температуры на верхние колебательные подуровни состояния попадает все большая часть молекул и вероятность перехода через области пересечения потенциальных поверхностей возбужденного синглетного, триплетного и основного состояний возрастает, то и й с увеличиваются с ростом температуры. При понижении температуры обе константы скорости стремятся к предельным значениям, соответствующим интеркомбинационной или внутренней конверсии с самого нижнего колебательного подуровня 5(. Если при комнатной температуре вещество флуоресцирует слабо, при низкой температуре оно может стать сильно флуоресцирующим. Ввиду большого разнообразия безызлучательных процессов трактовка зависимости квантового выхода флуоресценции от температуры обычно затруднена. Наряду с вышеуказанными процессами это могут быть взаимодействия типа переноса заряда с растворителем, заселение высоколежащих триплетных состояний, специфическое электронно-колебательное взаимодействие и т. д. Зависимость квантового выхода флуоресценции от температуры можно представить уравнением  [c.147]

    Первая из них легко преодолевается путем использования вращения ( 2000 об/мин) образца или быстрого сканирования лазерным лучом по поверхности образца. Вторую трудность преодолеть нелегко, если не уменьшить путь рассеивающего пучка в среде до минимума. Другая более тонкая процедура состоит в использовании дифференциальной спектроскопии КР с вращающейся кюветой, разделенной на две половины, вместе с совершенной электронной системой сравнения. Наличие отсеков для исследуемого образца и образца сравнения исключает необходимость внутреннего стандарта. Вероятность фотолиза при вращении образца также уменьшается. Влияние флуоресценции эффективно исключается лишь дискриминацией сигнала во времени. Методика основана на возбуждении комбинационного рассеяния импульсным лазером с длительностью импульсов порядка нано- [c.776]

    Выход флуоресценции (Ф ) молекул, способных к внутреннему вращению, в значительной степени зависит от вязкости и температуры среды. Это явление можно охарактеризовать как внутреннее тушение флуоресценции, обусловленное вращением части молекулы относительно ее остатка (отклоняющейся от плоской конформации в течение возбуждения). Для таких молекул изменение выхода флуоресценции можно выразить через время релаксации внутреннего вращения р  [c.277]

    ЖИЗНИ которого обычно не превышает —10 с. Девозбуждение подобного состояния может происходить как вследствие флуоресценции, так и в результате протекания процесса Оже. Удаление внутреннего электрона (который экранируется валентными электронами, см. рис. 30.1) сопровождается существенной перестройкой валентных электронов в ответ на увеличение эффективного заряда ядра. Фотоионизационный процесс и обусловлен этим возмущением и может сопровождаться процессами встряхивания и стряхивания. [c.140]

    Отклонения процесса детектирования от идеального приводят к появлению артефактов, главным образом уширению пика, искажению лика, появлению пиков потерь рентгеновского фотона в кремнии, краев поглощения кремния и золота и пика внутренней флуоресценции кремния. [c.215]

    Пик внутренней флуоресценции кремния [c.223]

    Фотоэлектрическое поглощение рентгеновского излучения мертвым слоем кремния приводит к эмиссии 5 /С-рентгеновско-го излучения из этого слоя в активный объем детектора. Это рентгеновское излучение кремния, которое не идет от образца, появляется в спектре в виде небольшого пика кремния, так называемого пика внутренней флуоресценции кремн Ия. Пример такого эффекта показан на спектре чистого углерода (рис. 5.26), в котором имеется также заметный край поглощения кремния. Для различных случаев количественного анализа интенсивность этого флуоресцентного типа соответствует кажущейся концентрации в 0,2 вес. % или меньше 51 в образце. [c.223]

    Дайте определение следующих терминов разрешающая способность, светосила, коэффициент пропускания светофильтра, микрофотометр, фотографическая эмульсия, фотолиз, колориметр, определяемое вещество, спектрофотометр, флуориметр, фосфориметр, спектрофлуориметр, раствор сравнения, коллимирование, люминесценция, резонансная флуоресценция, внутренняя конверсия, интеркомбинационная конверсия, колебательная релаксация, триплетное состояние и эффект внутреннего фильтра. [c.670]

    Скорости переходов. При изучении фотолюминесценции необходимо знать временные характеристики излучательных и конкурирующих с ними безызлучательных процессов дезактивации возбужденных состояний. Для излучательных процессов характерны следующие времена. Поглощение света происходит за время порядка одного колебания световой волны, т. е. около 10 с. Флуоресценция из самого нижнего возбужденного синглетного состояния происходят от 10 с (для я —я-переходов) до 10 (для я —п-переходов). Излучательные времена триплетных состояний лежат в пределах от 10 2 до с. Безызлучательные переходы из верхних возбужденных состояний происходят за время порядка 10 2 с. Скорость внутренней конверсии с нижнего возбужденного синглета в основное состояние часто сравнима со скоростью флуоресценции. Интеркомбинационная конверсия из нижнего синглетного состояния протекает за время порядка излучательного времени жизни флуоресценции. Р1нтеркомбинационные переходы из триплета в основной синглет происходят сравнительно медленно (Ю — 10 с в зависимости от условий). [c.57]

    При измерении квантовых выходов флуоресценции относительно стандартного вещества необходимо избегать ошибок за счет эффектов внутреннего фильтра, немонохроматичности возбуждающего света, флуоресценции кювет, тушения кислородом и фоторазложения. Ошибку, обусловленную первым фактором, легко устранить, используя достаточно разбавленные растворы. Если возбуждающий свет не монохроматичен, то, поскольку сравниваемые вещества не всегда имеют одинаковую разницу в поглощении двух [c.69]

    В 1943 г. А. Н. Теренин выдвинул гипотезу о том, что фосфорес-центное состояние молекул является триплетным. Годом позже Г. Льюис и М. Каша показали, что фосфоресценция органических молекул, наблюдающаяся в твердых матрицах, обусловлена испусканием света из самого нижнего возбужденного состояния этих молекул и имеет мультиплетность, равнук> трем. Еще в 1936 г. А. Яблонский предложил диаграмму энергетических уровней молекул, введя третий метастабильный уровень. Трехуровневая система объясняла существование трех видов люминесценции флуоресценцию, замедленную флуоресценцию и фосфоресценцию. После возбуждения в нижнее возбужденное синглетное состояние молекула может или испустить нормальную флуоресенцию, или вернуться в основное состояние на высокий колебательный уровень путем внутренней конверсии, или претерпеть интеркомбинадионную конверсию, перейдя в триплетное состояние. Попав в триплетное состояние, молекула оказывается в ловушке , так как излучательный переход в основное синглетное состояние запрещен, а чтобы вернуться в возбужденное синглетное состояние, молекула должна приобрести тепловую энергию, равную АЕ (Т— 5 ). Поэтому молекула остается в триплетном состоянии, пока в ней не произойдет один из следующих процессов 1) испускание запрещенного излучения — фосфоресценции 2) тепловая активация в состояние 5 с последующей замедленной флуоресценцией 3) интеркомбинационная конверсия в основное синглетное состояние. [c.158]

    Определение ПАУ в объектах окружающей среды, основанное на применении эффекта Шпольского, включает в себя их концентрирование путем экстракции н-гексаном, а затем идентификацию и количественное определение. В частности, количественное определение бенз(а)пирена проводят по линейчатым спектрам флуоресценции экстрактов [18]. Предел обнаружения с использованием внутренних стандартов составляет 10 7-10 8 о/д а д случае метода добавок - до 3 10 %. Как правило, спектры люминесценции регистрируют при 77 К (жидкий азот). Снижение температуры позволяет улучшить отношение сигнал/шум, однако сложность требуемого оборудования (гелиевые криостаты) гфепятствует внедрению сверхнизких температур. Обычно экстракт замораживают быстрым по-фужением тонкостенной кварцевой пробирки в жидкий азот. Иногда наносят каплю раствора на охлаждаемую площадку криогенератора. Для возбуждения люминесценции гфименяют источники с непрерывным спектром (ксеноновые лампы), из которого с помощью монохроматора или интерференционного фильтра вьщеляют полосы в 1-3 нм. Длины волн, рекомендуемые для возбувдения каждого ПАУ, приведены в [c.250]

    Методом рентгеновской спектроскопии можно анализировать монолитные или порошкообразные твердые пробы, жидкие вещества и иногда газы. Твердые пробы можно анализировать непосредственно. Для проведения количественного анализа их разбавляют введением подходящих веществ (наполнителей) (разд. 5.2.2.4) или добавлением внутреннего стандарта. Можно также готовить таблетки сплавлением с В2О3. В таких таблетках частицы вещества пробы достаточно малы (-<50 мкм) и равномерно распределяются по их толщине. Металлы следует протравить и тщательно отполировать (максимальная глубина трещин 100 мкм). При более глубоких трещинах — особенно если они будут перпендикулярны падающему и испускаемому излучениям — интенсивность флуоресценции уменьшается. Неоднородные твердые пробы гомогенизируют растворением. В качестве растворителей используют кислоты, воду или органические растворители, такие, как ацетон, ксилол. Матричный эффект с разбавлением уменьшается. Руководствуясь аналогичными соображениями, готовят тонкие слои толщиной приблизительно 1000—2000 А. При этом взаимное влияние элементов выражено еще мало и калибровочный график — почти прямая линия. [c.207]

    Так как линии рентгеновской флуоресценции возникают вследствие переходов электронов в наиболее глубоких внутренних электронных слоях, энергия химической связи в общем слишком мала для того, чтобы изменить состояние электронов этих слоев. Напротив, в случае легких элементов в образовании связи участвуют электроны ЛI-oбoлoчки. В этом случае могут проявляться заметные смещения длин волн, например, для элемента и его окисла. Для А1/Ср-линий это различие составляет ДЯ = 0,02 А. Наряду с изменением длины волны изменяется и относительная интенсивность линий. Длины волн линий алюминия изменяются также в зависимости от его координационного числа по отношению к кислороду. Этим способом можно было бы. например, определить координационные числа алюминия в полевых шпатах и других алюмосиликатах. [c.217]

    Прямыми линиями показаны излучательные переходы, волнистыми линиями — безызлу нательные переходы. 1 — внутренняя конверсия, ISO — интеркомбинационная кон-верснн, /iv —флуоресценция, /iV фосфоресценция. [c.313]

    Поглощение излучения на синглет-триплетном переходе мало, поскольку он запрещен в такой же степени, как запрещена фосфоресценция на триплет-синглетном переходе. Следовательно, возбуждение верхнего фосфоресцирующего уровня непосредственно из основного является неэффективным, гораздо чаще фосфоресценция возникает в результате радиационного распада триплетных уровней, заселяемых безызлучательными переходами с синглетных уровней, возбуждаемых поглощением из основного состояния. Диаграмма последовательности событий показана на рис. 4.1. В результате поглощения заселяется уровень Si" после быстрой релаксации (по крайней мере в конденсированных средах) по колебательным уровням молекула оказывается на уровне Si°, где она может потерять энергию либо за счет излучения (фосфоресценции), либо в результате безызлучательного перехода на уровень T l — интеркомбинационной конверсии (IS ), либо в результате безызлучательного перехода на уровень — внутренней конверсии (1 ). Возможно, это может показаться странным, что ISG на уровень Ti , являющийся запрещенным по спину согласно правилам отбора для безызлучательных переходов, может эффективно конкурировать с разрешенной по спину флуоресценцией или внутренней конверсией на So " однако фосфоресценция наблюдается во многих случаях, когда можно предположить, что 1 5i 5o относительно неэффективна. Для полного понимания процессов фотохимии молекул необходимо знать эффективность (квантовый выход) всех процессов, происходящих в ней. Даже если возбужденные частицы не вступают в химические реакции, не подвержены процессам разложения или тушения, то необходимо уметь определять квантовый выход флуоресценции ((pf), фосфоресценции (фр), интеркомбинационной конверсии " So (fis ) и внутренней конверсии 51 5о(ф1с). Учитывая, что суммарная эффективность всех процессов равна единице, получим [c.84]

    С длинами волн достаточно большими, чтобы не происходили процессы химической дезактивации. Ясно, что возбуждение нестабильных состояний очень нежелательно с точки зрения флуоресценции. Более того, во многих молекулах, в которых максимум поглощения соответствует энергии, большей энергии разрыва наименее стабильной связи, флуоресценция не наблюдается. Во-вторых, скорость внутримолекулярного обмена энергией должна быть меньше скорости радиационных процессов. Это означает, что интеркомбинационный переход должен быть медленным (мы уже отмечали выше и будем обсуждать позже в этом разделе низкую эффективность процесса внутренней конверсии 5]V -So) в разд. 4.5мыувидим, что IS обычно является медленным для состояний (л, я ) (я, я ) по сравнению с состояниями (я, я ) и что эффективность процесса растет с уменьшением разницы в энергии 5i и T l. Экспериментальные наблюдения флуоресценции находятся в соответствии с этими идеями простые карбонильные соединения, в которых наиболее длинноволновое поглощение соответствует переходам п- -п, редко флуоресцируют (но часто фосфоресцируют), в то время как ароматические углеводороды (с я- -я -поглощением) часто флуоресцируют. Увеличение сопряжения в углеводородах сдвигает первый максимум поглощения [c.91]

    Количественное изучение люминесценции требует использования специальных методик, часть из которых описана в этом разделе. Интенсивности флуоресценции, фосфоресценции и хемилюминесценции обычно существенно ниже, чем у световых потоков, применяемых для фотолиза или возбуждения. Поэтому фотографическая регистрация спектров люминесценции может дать данные об интенсивности, усредненные по периоду времени экспозиции, а также о спектральном распределении излучения. Однако обычно при количественных исследованиях используются фотоэлектрические методы регистрации из-за их лучщей чувствительности и скорости отклика. Можно изготовить фотоэлементы типа описанных в предыдущем разделе для регистрации излучения вплоть до длины волны света порядка 1300 нм, подбирая подходящий катод (Ад—О—Сз). Коротковолновая граница регистрации определяется в большей степени пропусканием окон фотоэлемента, чем свойствами катода. Стандартный способ расширения области регистрации в УФ-область состоит в покрытии передней стенки фотоприемника флуоресцирующим материалом, преобразующим УФ-из-лучение в видимое, которое и регистрируется фотоприемником через стеклянное окно. Слабый ток фотоприемника можно усилить с помощью стандартных электронных устройств, этим путем удается регистрировать слабые свечения. Усиление неизбежно приводит к появлению некоторого уровня шума, поэтому слабое свечение лучше регистрируется фотоумножителями. Фотоумножитель фактически является фотоэлементом с внутренним усилением, который почти лишен шума. Рис. 7.3 по- [c.189]

    Эксперименты на миллисекундной и микросекундной временных шкалах дают информацию о скоростях бимолекулярных реакций фотолитических фрагментов и возбужденных состояниях, а также о фосфоресценции (испускании света при переходе из триплетного возбужденного состояния). В нано-секундных экспериментах можно исследовать флуоресценцию, испускаемую при переходе из нижнего синглетного возбужденного состояния, а также интеркомбинационную конверсию. Измерения с пикосекундным разрешением дают кинетические данные о геминальной рекомбинации, обмене энергией, колебательной релаксации и более медленных процессах внутренней конверсии и изомеризации. Начинают появляться сообщения об исследованиях в фемтосекундном диапазоне. Следует помнить, что за одну фемтосекунду свет проходит расстояние лишь в 300 нм или порядка одной длины волны Эксперименты на этой временной шкале касаются процесса поглощения света и самых ранних стадий превращения энергии, вызывающего химические и физические изменения вещества. [c.204]

    Квантовый выход в обычных фотохимических процессах должен быть равен или меньше единицы. Это следует из принципа фотохимической эквивалентности Эйнштейна, согласно которому погло-щенпе кванта света может вызвать только одну первичную реакцию. В то же время поглощение света не обязательно приводит к химическому превращению. Образовавшаяся в результате поглощения света возбужденная частица может перейти в основное состояние с испусканием кванта света (флуоресценция или фосфоресценция) нли в результате внутренней конверсии электронного возбуждения в энергию колебаний и вращения. [c.316]

    При измерении квантовых выходов флуоресценции относительно стандартного вещества возможны ошибки за счет эффектов внутреннего фильтра (реабсорбция), немонохроматичности возбуждающего света, флуоресценции кювет, тушения кислородом и фоторазложения. Ошибку, обусловленную первым фактором, легко устранить, используя достаточно разбавленные растворы. Для предотвращения немонохроматичности следует проверять чистоту возбуждающего света. Во избежание ошибки при измерении оптической плотности следует по возможности измерять оптическую плотность раствора пучком света того же спектрального состава, что и при возбуждении флуоресценции. Необходимо проводить дополнительные измерения для учета флуоресценции растворителя, стенок кюветы. Для этого при исследовании растворов необходимо измерить в тех же условиях спектр флуоресценции растворителя. Спектр, полученный при измерении флуоресценции растворителя, вычитается из спектра, полученного при измерении раствора, до его исправления. [c.160]

    Раствор аурамина О готовят на том же буфере, используя коэффициент молярной экстинкции, равный 4,41-10 М см при 430 нм. Титрование ЛДГ аурамином О проводят непосредственно во флуори-метрической кювете, добавляя к раствору белка конечной концентрации 4,4-10 5 М раствор аурамина О так, чтобы его конечные концентрации менялись от М до 2,5-10 М. В качестве контроля снимают флуоресценцию тех же концентраций аурамина О в отсутствие белка Значения интенсивности флуоресценции исправляют на флуоресценцию свободного зонда и на разведение белка при добавлении аурамина О (следует использовать минимальные объемы раствора красителя). Учитывают влияние эффекта внутреннего фильтра по формуле  [c.341]

    К числу процессов, конкурирующих с флуоресценцией, относятся внутренняя конверсия, интеркомбинационная конверсия (в результате последней молекула переходит в триплетное состояние), а также фв-тохимические реакции, в которые может вступать молекула, находясь в синглетном возбужденном состоянии. Внутренняя конверсия представляет собой процесс, в ходе которого молекула переходит с низшего колебательного подуровня одного из более высоких электронно-возбужденных состояний на один из высоких колебательных подуровней основного состояния. Этот процесс служит главным каналом, по которому снимается электронное возбуждение, и прямо конкурирует с флуоресценцией. Поэтому время жизни молекулы в возбужденном состоянии ) (т) обычно меньше Тг. Эффективность флуоресценции по определению равна [c.30]

    ГИИ, с другой стороны, имеется ряд осложнений, которые могут привести ничего не подозревающего 0перат0 ра к затруднениям. Артефакты появляются на каждой стадии процесса спектральных измерений. Артефакты процесса обнаружения представляют собой ущирение и искажение формы пика, пики потерь кремния, поглощение и пик внутренней флуоресценции кремния. Артефакты, возникающие пря обработке импульсов, включают в себя наложение импульсов, суммарные пики и чувствительность к ошибкам при коррекции мертвого времени. Дополнительные артефакты появляются из-за окружения системы полупроводниковый детектор — микроскоп и включают микрофонные эффекты, наводки с земли и загрязнение маслом и льдом деталей детектора. Как в кристалл-дифракционном, так и в спектрометре с дисперсией по энб ргии может регистрироваться паразитное излучение (рентгеновское и электроны) от окружающих образец предметов, но из-за большего телесного угла сбора спектрометр с дисперсией по энергии более подвержен влиянию паразитного облучения. Однако из-за большого угла сбора такой спектрометр менее чувствителен к эффектам дефокусировки спектрометра при изменении положения образца. [c.265]


Смотреть страницы где упоминается термин Флуоресценции внутреннее: [c.68]    [c.42]    [c.47]    [c.427]    [c.232]    [c.112]    [c.316]    [c.179]    [c.277]    [c.87]   
Быстрые реакции в растворах (1966) -- [ c.151 , c.154 , c.156 , c.164 , c.168 ]




ПОИСК





Смотрите так же термины и статьи:

Внутренняя конверсия, конкуренция флуоресценцией

Молекулярная флуоресценция внутренняя конверсия

Нарушенное полное внутреннее отражение и нарушенное полное внутреннее отражение с флуоресценцией

Нарушенное полное внутреннее отражение с флуоресценцией

Флуоресценция

Флуоресценция внутреннее тушение

Флуоресценция конверсия внутренняя

Флуоресценция эффект внутреннего фильтра



© 2025 chem21.info Реклама на сайте