Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флуоресценция рентгеновская

    Практической целью методов атомной спектроскопии при анализе вещества является качественное, полуколичественное или количественное определение элементного состава анализируемой пробы. Еще 25—30 лет назад эти задачи решались, по существу, лишь одним из методов — атомно-эмиссионным методом спектрального анализа в оптическом диапазоне спектра, В настоящее время достаточно широкое применение получили также методы анализа по атомным спектрам поглощения и флуоресценции в оптическом диапазоне, а также по эмиссионным и флуоресцентным спектрам в рентгеновском диапазоне. Во всех случаях в основе этих методов лежат квантовые переходы валентных или внутренних электронов атома из одного энергетического состояния в другое. [c.53]


    Механизм возбуждения. Чтобы атом испустил квант рентгеновского излучения hv, ему необходимо сообщить энергию. Это можно осуществить облучением пробы потоком электронов эмиссионная спектроскопия) или рентгеновским излучением достаточной энергии рентгенофлуоресцентная спектроскопия). Практически ввиду более легкого осуществления используют только второй способ возбуждения. Его преимущество заключается еще в том, что возникающий спектр флуоресценции имеет только характеристические спектральные линии, в то время как на эмиссионный спектр накладывается спектр непрерывного излучения. В рентгенофлуоресцентной спектроскопии пробу облучают полихроматическим излучением рентгеновской трубки и наблюдают возникающее вторичное излучение. Для перемещения электрона с занимаемого им основного уровня необходимо, чтобы энергия поглощаемого рентгеновского кванта hv была по меньшей мере равна работе ионизации. Если поглощаемая энергия больше, то избыточная энергия высвобождается в виде кинетической энергии фотоэлектрона. По истечении 10 с ионизированный атом ступенчато переходит в основное состояние. Рассматривая уменьшение энергии электрона при его переходе с верхнего уровня на нижний, можно заметить, что рентгеновский квант излучается не при каждом электронном переходе. Эффективной в этом отношении оказывается только часть переходов (/ij). Остальное число переходов п — () вызывает эмиссию электронов из внешних электронных оболочек атома, поскольку они воспринимают всю энергию, освобождающуюся при осуществлении внутренних электронных переходов, и вследствие этого отрываются от атома оже-эффект). Под выходом флуоресценции W понимают отношение /if/n. Величина W для различных оболочек не одинакова и возрастает с увеличением атомного номера элемента. Зависимость выхода флуоресценции для /С-оболочки от атомного номера элемента можно представить следующей полу эмпирической формулой  [c.201]

    Физики сразу же заинтересовались этим открытием. Среди тех, кто первым начал изучать рентгеновские лучи, был и французский физик Антуан Анри Беккерель (1852—1908). Он занимался флуоресценцией — свечением, наблюдаемым у ряда веществ после облучения их солнечным светом. Его интересовало, не содержит ли флуоресцентное свечение рентгеновские лучи. [c.152]

    В 1896 г. Беккерель завернул фотопленку в черную бумагу и оставил ее на солнечном свету, поместив на нее кристалл соединения урана, считавшегося флуоресцентным. Обычный свет не может пройти сквозь черную бумагу и воздействовать на фотопленку, в то время как рентгеновские лучи пройдут сквозь бумагу, и пленка при этом почернеет. Конечно, Беккерель обнаружил, что пленка почернела. Однако вскоре выяснилось, что кристалл вызывает почернение пленки, даже если его не облучают солнечным светом, т. е. даже в таких условиях, когда флуоресценция невозможна. Короче говоря, кристалл постоянно испускает проникающее излучение  [c.153]


    Опишите, как Беккерель различал явление флуоресценции, рентгеновские лучи и естественную радиоактивность. [c.316]

    Число нейтра- лизации Содержание металлов, ч/млн (метод флуоресценции рентгеновских лучей)  [c.249]

    Если осуществляется переход электрона с какой-то внешней электронной оболочки на вакансию внутренней оболочки, то при этом может происходить испускание кванта рентгеновского излучения. Это так называемая рентгеновская флуоресценция. Так, например, при А -захвате по схеме, показанной на рис. [c.138]

    Выход флуоресценции. Рентгеновская флуоресценция — это механизм освобождения атома от избыточной энергии, полученной при ионизации, путем испускания рентгеновского фотона. Существует также безызлучательный механизм снятия возбуждения — путем испускания Оже-электронов. Он заключается в том, что избыточная энергия передается другому электрону, находящемуся на том же или более высоком уровне, вследствие чего электрон покидает атом (рис. 14.80). В результате возникает дважды ионизированное состояние. [c.8]

    Рентгеновская флуоресценция Рентгеновское излучение высокой энергии Рентгеновское излучение, характеристическое для атомов образца Пучок вторичных рентгеновских лучей диспергируется кристаллом. Интенсивность отдельных лучей измеряется детектором излучения (например, пропорциональным счетчиком) Получается простой рентгеновский эмиссионный спектр. Метод используется для качественного и количественного анализа, определения многих элементов в одном образце Определение основных составляющих и примесей в минералах, сплавах и т. п. [c.22]

    К числу первых относятся методы нейтронной активации, флуоресценции рентгеновскими лучами и пламенно-фотометрические методы. Однако чувствительность этих методов сравнительно невелика и, например, для метода нейтронной активации составляет 1,5. 10 % хлора. [c.73]

    Наиболее распространенные методики анализа пищевых продуктов [31, 32] включают использование таких методов, как тонкослойная хроматография, колоночная высокоэффективная жидкостная хроматография, газовая хроматография, атомно-абсорбционный и атомно-эмиссионный спектральный анализ, УФ-и ИК-спектроскопия, спектрофотометрия, масс-спектрометрия, ЯМР низкого разрешения, электрохимические методы (электрофорез, потенциометрия и др.). люминесцентный анализ (фосфоресценция и флуоресценция), рентгеновская флуоресценция, непрерывный анализ в потоке. [c.34]

    Беккерель. Беккерель решил выяснить, не могут ли флуоресцирующие минералы излучать рентгеновские лучи. В один из дней 1896 года он выставлял минералы, содержавшие уран, на солнечный свет. Далее он помещал рядом с ними фотографическую пластинку, завернутую в черную бумагу. Если бы минерал при флуоресценции излучал и рентгеновские лучи, то пластинка, защищенная от света, была бы засвеченной. К радости, он обнаружил, что пластинка почернела. [c.307]

    Рассмотрим процесс фотоэлектронной эмиссии в РЭС вместе с рентгеновским поглощением и релаксационными процессами рентгеновской флуоресценции и эмиссии оже-электронов в одноэлектронном приближении по схеме, представленной на рис. VI. для диэлектрика. [c.136]

    Относительные интенсивности линий в сериях характеристического рентгеновского спектра определяются соответствующими правилами отбора, т. е. вероятностями квантовых переходов, а Зависимость выходов, флуоресценции (1) и оже-электро-частоты, как уже было сказано J,pJ, вакансии в /(-оболочке (см. равенство VI.5), дают раз- от атомного номера 2 элемента ности энергии квантовых уровней электронов. [c.139]

    Определение толщины покрывающего слоя при помощи рентгеновских спектрографов можно провести двумя путями а) непосредственно измерять интенсивность флуоресценции исследуемого внешнего слоя и б) определять способность его к поглощению излучения, возбуждая флуоресценцию нижележащего материала носителя. Так как для большинства слоев коэффициенты поглощения известны, его толщину можно рассчитать непосредственно. В первом методе определяют так называемое локальное распределение элемента в слое, которое при очень тонких слоях (до 150 нм) пропорционально интенсивности флуоресценции. Возможная модификация обоих методов может заключаться в определении толщин сравнением с эталонами. В зависимости от обстоятельств при выборе наиболее целесообразного метода учитывают как размеры и однородность слоя, так и атомные номера элементов покрытия и основы. Другие специальные области применения рассматриваются в литературе [25—32]. [c.218]

    Некоторые вещества, имеющие особую молекулярную структуру, при облучении их видимыми или ультрафиолетовыми лучами становятся источниками излучения, т. е. люминесцируют. Люминесцентное свечение возникает в веществе при облучении его рентгеновскими и 7-лучами, бомбардировке электрически заряженными частицами (например, а- или -частицами) за счет энергии, освобождающейся при химической реакции, тепловой энергии и пр. По продолжительности свечения процессы люминесценции разделяют на флуоресценцию и фосфоресценцию, первая из которых исчезает с прекращением облучения, а вторая длится какой-то промежуток времени после облучения. При люминесцентной дефектоскопии материалов (63) используют в основном явление флуоресценции. [c.163]


    Вероятность оже-процесса уменьшается с увеличением энергии первичного ионизирующего излучения или пучка электронов (ионов) и атомного номера Z элемента. Для выхода рентгеновской флуоресценции имеет место обратная зависимость. При атомных номерах 3<2<14 для химического анализа используют обычно KLL — оже-переходы, а при 14 2 38 LMM — переходы. В случае энергий переходов >10 кэБ преобладает рентгеновская флуо- [c.139]

    Термин фотохимия используется достаточно широко. Хотя фотохимия в основном рассматривает химические превращения при поглощении света, ряд физических процессов, не включающих каких-либо суммарных химических изменений, также относятся к области фотохимии например, такие процессы, как флуоресценция (когда свет испускается образцом, поглотившим излучение) или хемилюминесценция (когда продуктом химической реакции является излучение света), должны рассматриваться как фотохимические. Слово свет также используется достаточно произвольно, поскольку в процессах, идентифицируемых как фотохимические, участвует излучение гораздо более широкого диапазона длин волн, чем видимая область. Длинноволновый предел, видимо, располагается в ближней инфракрасной области (около 2000 нм), а рассматриваемый диапазон простирается далеко в вакуумный ультрафиолет (см. примечание на с. 179) и лишь формально ограничивается длинами волн, при которых излучение становится заметно проникающим (рентгеновское излучение). Важным вопросом фотохимии является механизм участия возбужденных состояний атомов и молекул в изучаемых процессах. Очевидно, что изучение процессов поглощения или испускания света является делом спектроскописта в той же мере, что и фотохимика, и последний должен иметь по крайней мере общие знания в области спектроскопии. В то же время фотохимику [c.11]

    Аналогично тому как РЭС связана с рентгеновскими спектрами поглощения и рентгеновской флуоресценцией, метод ФЭС связан с электронными УФ спектрами поглощения и релаксационными процессами фотолюминесценции (флуоресценции и фосфоресценции) в УФ и видимой областях спектра (см. учебник Физические методы исследования в химии. Структурные методы и оптическая спектроскопия ). [c.140]

    В чем суть релаксационного оже-процесса и рентгеновской флуоресценции  [c.166]

    При К захвате электрона образующейся вакансией наблюдается рентгеновская флуоресценция и частота излучения V" соответствует разности энергий, например  [c.277]

    Интеграл в уравнении (5.2.15) означает, что флуоресценция вызывается первичным полихроматическим рентгеновским излучением всех длин волн в интервале К между границей непрерывного спектра и краем поглощения элемента V- Постоянная элемента учитывает различные величины, зависящие от его атомного номера. Таким образом, интенсивность пропорциональна числу фотонов, поглощенных /С-уровнем. Доля этих фотонов по отношению к числу фотонов, поглощенных всеми уровнями, составляет [c.203]

    Принципиальная схема рентгеновского спектрометра. Первичное излучение рентгеновской трубки вызывает флуоресценцию элементов, входящих в состав пробы. Излучение флуоресценции проходит вдоль набора продольных плоскопараллельных пластин, падает на кристалл-анализатор и, отражаясь от него, разлагается в спектр. Отражающееся в различных направлениях излучение определенных длин волн регистрируется счетчиком, совмещенным с гониометром. Такая схема прибора основана на принципе рентгеновской дифрактометрии. Этот метод отличается от рентгеновской спектроскопии только тем, что в нем задаются длиной волны регистрируемого излучения, а строение кристалл-анализатора остается неизвестным. В рентгеновской же спектроскопии имеет место обратное. [c.204]

    К комплексным соединениям платины (П) относятся, например, соли тетра-цианоплатиновой 1) кислоты H2[Pt( N)4]. Бариевая соль этой кислоты Ba[Pt( N)4] обнаруживает яркую флуоресценцию при действии на нее ультрафиолетовых и рентгеновских лучей и служит в рентгеноскопии для покрытия флуоресцирующих экранов. Препараты на основе дихлородиамминплатины [Pt(NHa)2 I2] применяются для лечения злокачественных опухолей. [c.532]

    Так как в обоих случаях флуоресценция вызывается спектром одной и той же рентгеновской трубки и поэтому основные длины волн I равны, уравнение для Л/д/Л/ д о,, упрощается [c.216]

    Специальные области применения. Применяя специальные рентгеновские трубки, можно получать узкие пучки лучей диаметром. 100 мкм. В связи с этим в сплавах и рудах можно качественно и количественно анализировать отдельные фазы и включения без разрушения образцов. В случае когда необходимо измерить очень малую интенсивность линий флуоресценции, можно даже отказаться от разложения излучения в спектр кристалл-анализа-тором и определять элементы по энергии соответствующих квантов при помощи амплитудного анализатора. [c.217]

    Рассмотрим механизм возбуждения рентгеновской флуоресценции. Для наглядности воспользуемся моделью атома Бора, изображенной на рис. 33.1. [c.779]

    В [54] рассмотрены методы определения сернистости угля в диапазоне 0,4—7% с погрешностью 0,11% флуоресцентными методами. Экспрессное определений зольности по рентгеновской флуоресценции представ лено в работе [55]. Излучение от в этом случай [c.37]

    В США запатентована система рентгеновского анализа с регистрацией рассеянного излучения и флуоресцентного излучения трех компонентов пробы . Е Великобритании запатентованы устройство рентгеновского флуоресцентного анализа с применением промежуточной мишени для увеличения выхода флуоресценции способ флуоресцентного анализа с использованием трубки, бериллиевый анод которой покрыт слоем германия или хрома, и фильтра для выделения флуоресцентного излучения, детектируемого счетчиком Гейгера способ определения сернистости угля по корреляции с железом, где использован Ри и регистрируется рассеянное излучение и флуоресцентное излучение Ре способ флуоресцентного анализа с установкой друг за другом источника, мишени, пробы и детектора. В ФРГ запатентованы" устройство флуоресцентного анализа, в котором излучение источника направляется на пробу двумя рефлекторами (мишенями) способ и устройство для определения зольности с регистрацией рассеянного излучения и флуоресцентного излучения Ре способ и устройство для анализа состава проб с коллимацией и мишенями. Во Франции запатентованы способ и устройство флуоресцентного анализа с трубкой из бериллия и равновесным фильтром перед счетчиком .  [c.38]

    Использование тонких срезов значительно упрощает количественный анализ биологических материалов. Электроны теряют лишь малую часть своей энергии при прохождении через образец, и отражение электронов от образца настолько мало, что им можно пренебречь. Вторичная флуоресценция рентгеновского излучения пренебрежимо мала, и поглощение рентгеновского излучения мало, за исключением очень Jfeгкиx элементов, таких, как натрий. [c.77]

    Термин абсолютная конфигурация используют для обозначения известного расположения лигандов относительно элемента хиральности в трехмерном пространстве [32]. После 1951 г. стало возможным определять абсолютную стереохимию хиральной молекулы с помощью метода, основанного на флуоресценции рентгеновских лучей [49]. Абсолютная конфигурация молекулы может быть изображена в плоскости бумаги с помощью хорошо знакомых клиньев и штрихов или с помощью построенных по определенному принципу проекционных формул, например проекционных [c.33]

    К комплексным соединениям платины (П) относятся, например, соли тетрациано- ) платиновой кислоты HiIP N) . Бариевая соль этой кислоты Ba Pt( N)4] обнаруживает яркую флуоресценцию прн действии на нес ультрафиолетовых и рентгеновских лучей и служит в рентгеноскопии для покрытия флуоресцирующих экранов. [c.699]

    Рентгеновская флуоресценция 10 (зависит от матрицы) Пламенный атомно-абсорбцион- Ю (зависит от элемента) ный метод [c.147]

    Наиболее подробно изучались и разрабатывались методики определения в нефтях ванадия. Для этой цели применялись метод рентгеновской флуоресценции с предварительным концентрированием ванадия (а также никеля и железа) с дитиокарбама-том [279] метод газожидкостной хроматографии (до 0,1 м на [c.147]

    Если рентгеновские спектры испускания, поглощения и флуоресценции были известны и стали применяться еще в первой половине нашего века, то новые методы анализа и исследования веществ, которые можно условно объединить под общим названием — методы фотоэлектронной спектроскопии, разрабатывались лищь в 50-х и 60-х годах параллельно в СССР, Швеции, Англии и США. Их применение в химии началось в конце 60-х, а соответствующие серийные приборы появились лишь в 70-х годах и постоянно совершенствуются. [c.134]

    Эти невидимые лучи способны вызывать флуоресценцию некоторых кристаллических веществ (цинковая обманка, барий платиносинеродистый и др.), воздействовать на фотопластинки (засвечивать их через непрозрачные для видимого света экраны) и ионизировать газы. Данные явления используют для обнаружения и диагностики рентгеновских лучей, а также широко применяются в практике. Известно два типа рентгеновского излучения тормозное и характеристическое. [c.113]

    Используемые в рентгеновской спсктроскопии трубки характеризуются высокой потребляемой мощностью (3,5 кВт). Ввиду этого предпочитают трубки с вольфрамовым анодом. Излучение флуоресценции особенно велико в том случае, когда собственное излучение рентгеновской трубки имеет длину волны, близкую к краю поглощения определяемого элемента (например, использование анода из хрома при определении К, Са, Т1). [c.204]

    Методом рентгеновской спектроскопии можно анализировать монолитные или порошкообразные твердые пробы, жидкие вещества и иногда газы. Твердые пробы можно анализировать непосредственно. Для проведения количественного анализа их разбавляют введением подходящих веществ (наполнителей) (разд. 5.2.2.4) или добавлением внутреннего стандарта. Можно также готовить таблетки сплавлением с В2О3. В таких таблетках частицы вещества пробы достаточно малы (-<50 мкм) и равномерно распределяются по их толщине. Металлы следует протравить и тщательно отполировать (максимальная глубина трещин 100 мкм). При более глубоких трещинах — особенно если они будут перпендикулярны падающему и испускаемому излучениям — интенсивность флуоресценции уменьшается. Неоднородные твердые пробы гомогенизируют растворением. В качестве растворителей используют кислоты, воду или органические растворители, такие, как ацетон, ксилол. Матричный эффект с разбавлением уменьшается. Руководствуясь аналогичными соображениями, готовят тонкие слои толщиной приблизительно 1000—2000 А. При этом взаимное влияние элементов выражено еще мало и калибровочный график — почти прямая линия. [c.207]

    Так как линии рентгеновской флуоресценции возникают вследствие переходов электронов в наиболее глубоких внутренних электронных слоях, энергия химической связи в общем слишком мала для того, чтобы изменить состояние электронов этих слоев. Напротив, в случае легких элементов в образовании связи участвуют электроны ЛI-oбoлoчки. В этом случае могут проявляться заметные смещения длин волн, например, для элемента и его окисла. Для А1/Ср-линий это различие составляет ДЯ = 0,02 А. Наряду с изменением длины волны изменяется и относительная интенсивность линий. Длины волн линий алюминия изменяются также в зависимости от его координационного числа по отношению к кислороду. Этим способом можно было бы. например, определить координационные числа алюминия в полевых шпатах и других алюмосиликатах. [c.217]

    Существенно, что рентгеновские кванты излучаются не при каждом переходе электронов с более высоких энергетических уровней на вакантные места основного уровня. Встречаются переходы, не сопровождающиеся излучением, в частности такие, при которых высвобождающаяся энергия затрачивается на возбуждение и эмиссию внешних валентных электронов. Отношение количества переходов щ, сопровождающихся характеристическим излучением, к общему количеству переходов называют выходом флуоресценции W). Он возрастает с увеличением атомного но- 1epa элемента в соответствии со следующим полуэм-пирическим уравнением  [c.782]

    В рентгенофлуоресцентном анализаторе с использованием комптоновского рассеяния и флуоресценции золообразующих элементов применяют рентгеновские трубки с молибденовыми, вольфрамовыми и хромовыми > анодами [59]. Наилучшие результаты были получены с первыми двумя погрешность определения А составила 0,5%. Близкий к прибору, описанному в [9], анализатор типа N0-5804 непрерывного определения сернистости угля в потоке [60]. Известен рентгене флуоресцентный анализатор состава пульпы и суспензий с ° Ри и пропорциональным счетчиком или германиевым детектором [61]. [c.38]

    Методы дифракции рентгеновского излучения и флуоресценции применены финской фирмой Оутукумпу Электронике для определения химического состава золы и содержания твердого в пульпе [94]. Эта же задача в работе [95] решается с помощью других методов измерение плотности по ослаблению излучения от s по рассеянию у-излучения и флуоресцентному излучению Fe определяли зольность и содержание железа, по прохождению и замедлению нейтронов — водорода и пустой фракции. [c.40]


Смотреть страницы где упоминается термин Флуоресценция рентгеновская: [c.173]    [c.133]    [c.36]    [c.308]    [c.30]    [c.135]    [c.205]    [c.353]   
Современная аналитическая химия (1977) -- [ c.22 , c.24 , c.100 , c.106 , c.131 ]

Инструментальные методы химического анализа (1989) -- [ c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Добавок метод в рентгеновской флуоресценции

Испускание рентгеновской флуоресценции

Источники возбуждения рентгеновской флуоресценции

Комбинационного рассеяния спектрометрия рентгеновская флуоресценция

Методы спектроскопического анализа ПШ. Радиоизотопы, используемые в качестве источников возбуждения рентгеновской флуоресценции

Разбавления метод в рентгеновской флуоресценции

Флуоресценция

Флуоресценция спектра рентгеновских лучей



© 2025 chem21.info Реклама на сайте