Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Источники рентгеновские

    Ионизирующее излучение поглощается материалом, окружающим радиоактивный источник. Это поглощение происходит в воздухе, в самом веществе (самопоглощение), в стенках устройства, экранирующего образец, в окощке обнаруживающего излучение прибора, а также во всех видах специальных поглотителей, монтируемых между образцом и детектором. Определение типа излучения и его энергии производится с помощью поглотителей различной толщины, так как известно, что альфа-частицы имеют очень небольшую глубину проникания, бета-частицы проникают в материал несколько глубже, а гамма-лучи могут проникать очень глубоко. На практике этот метод используется очень редко, и только в связи с бета-нзлучателями. Однако различия в счете импульсов, обусловленные различиями в толщине и плотности контейнеров образцов, могут создавать серьезные трудности, когда речь идет о бета-излучателях и источниках рентгеновского излучения, таких, как йод-125. Поэтому в этих случаях часто используют пластмассовые пpoб pки, у которых различия в толщине и плотности минимальны. [c.76]


    Рентгеновские трубки. Одним из наиболее распространенных типов трубок являются запаянные электронные трубки, представляющие стеклянный баллон, в котором создается высокий вакуум порядка 10 —10- Па. Источником пучка электронов служит катод-спираль из вольфрамовой проволоки, накаливаемой током до 2100—2200°С. Под воздействием высокого напряжения электроны с большой скоростью направляются к аноду и ударяются о впрессованную в его торце пластинку — антикатод, изготовляемый из металла, излучение которого используется для анализа (Сг, Ре, Си, Мо и пр.). Площадка на антикатоде, на которую падают электроны и которая служит источником рентгеновского излучения, называется фокусом. Трубки изготавливаются с обычным (5—10 мм и более) и острым (несколько сотых или тысячных долей мм ) фокусом, который может иметь различную форму (круглую, линейную). Поскольку рентгеновское излучение поглощается стеклом, для их выпуска в баллоне трубки предусмотрены специальные окна из пропускающих рентгеновское излучение веществ, например металлического бериллия, сплавов, содержащих легкие элементы. Важнейшая характеристика рентгеновских трубок — их предельная мощность — произведение максимального напряжения на анодный ток. В табл, 9 приведены основные характеристики некоторых серийно выпускаемых рентгеновских трубок. [c.75]

    ИЛИ между образцом и источником рентгеновского излучения (обратная съемка). Рентгенограммы, полученные при прямой съемке, называются лауэграммами, при обратной съемке — эпиграммами. Лауэграмма имеет вид отдельных пятен-рефлексов, расположенных вокруг пятна, оставленного первичным пучком рентгеновских лучей и группирующихся в более или менее. четко выраженные эллипсы, проходящие через центр лауэграммы (рис. 40). Эпиграммы имеют примерно такой же вид, но пятна группируются по гиперболам, которые в частном случае могут вырождаться в прямые линии. [c.79]

    Источниками рентгеновских лучей являются рентгеновские трубки, представляющие собой в простейшем случае двухэлектродные вакуумные приборы. [c.102]

    Поскольку составной частью прибора РФС является источник рентгеновского излучения, который ионизует образец, этим методом можно определять энергии связывания как валентных электронов, так и электронов оболочки. Обычно используют рентгеновское излучение Ка Mg и А1 с энергией соответственно 1253,6 и 1486,6 эВ. Методом РФС исследовали твердые вещества, газы, жидкости, растворы и замороженные растворы. В случае твердых веществ и замороженных растворов рассчитанные энергии связывания электронов относят к энергии уровня Ферми твердого вещества. Уровень Ферми соответствует высшему заполненному уровню электронного слоя структуры твердого вещества при О К. Уравнение сохранения энергии (16.23) преобразуется к виду [c.334]


    Основными узлами рентгеновского дифрактометрического устройства являются гониометр, обеспечивающий перемещение образца и счетчика квантов относительно первичного пучка, источник рентгеновского излучения, счетчик квантов, укрепленный на гониометре, с соответствующим электронным и измерительным устройством. [c.120]

    Основным методом определения структуры кристаллов является рентгеноструктурный анализ. Установка для исследования (рис. 114) состоит из источника рентгеновских лучей, устройства для закрепления и ориентирования исследуемого образца и приемника рассеянного образцом излучения. Приемниками служат фотопластинки (или счетчики рентгеновских квантов). [c.182]

    В качестве источника рентгеновских лучей в дифрактометре ДРОН-2,0 служат рентгеновские трубки БСВ-8М и БСВ-10М. Максимальная мощность трубки БСВ-8М с медным анодом составляет 2 кВт. [c.132]

    Форма вольфрамовой спирали трубки (источника электронов) во многом определяет размер и форму фокуса, т.е. участка анода, на который попадает пучок электронов и который является источником рентгеновского излучения. Различают трубки с круглым и линейчатым фокусом. Для вывода используемых в работе пучков рентгеновского излучения трубка бывает снабжена двумя или четырьмя окошками из берил- [c.14]

    Энергия, необходимая для удаления электрона с его орбитали, изменяется от 5 до 30 эВ для валентных оболочек атомов и от 50 до 5000 эВ для внутренних оболочек. Поэтому необходимо, чтобы источник мог давать монохроматическое излучение в пределах этого интервала энергий. В качестве источников рентгеновского излучения используют Mg, А1, N3, Ag, Си, Сг, Мо (/Са-линии), для УФ-области — Не, N6, Аг, Хе, Кг. [c.257]

    Если в качестве источника рентгеновских лучей использовать синхротрон, то появляется и четвертая возможность — изменения волны "К. Если полихроматический метод является в некотором смысле аналогом метода порошка (полный набор длин волн X — полный набор ориентаций), то метод переменной длины волпы (синхротрон-ный метод) представляется аналогом метода вращения. Поэтому не исключено, что при соответствующем развитии техники он найдет в структурном анализе широкое применение. [c.56]

    Источниками рентгеновского излучения служат рентгеновские трубки, представляющие собой двухэлектродные электровакуумные приборы. Для возбуждения в них рентгеновского излучения создается поток свободных электронов высокой кинетической энергии, который направляется на металлическую мищень, где происходит взаимодействие быстрых электронов с веществом и возникает рентгеновское излучение. Рентгеновская трубка имеет вид баллона, выполненного или целиком из стекла, или из стекла и металла (рис. 5.5). В баллоне расположены катод и анод. Катодом служит V-образная или спиральная нить из вольфрама, нагреваемая до [c.116]

    Источник рентгеновских лучей, в качестве которого используют запаянную рентгеновскую трубку или рентгеновские трубки с вращающимися анодами. Источник последнего типа дает рентгеновское излучение повышенной интенсивности. [c.125]

    Фарадея, удобного для обнаружения дополнительных источников рентгеновского возбуждения в электронно-лучевом приборе. [c.242]

    Из-за требования, согласно которому в системе с дисперсией по длинам волн источник рентгеновского излучения должен находиться точно на круге фокусировки Роуланда, сканирование по большой площади может приводить к падению интенсивности излучения на краях области сканирования. Это явление проявляется заметнее с повышением разрешения кристалл-дифракционного спектрометра. Одним из способов контроля, насколько серьезно падение интенсивности рентгеновского излучения, является получение изображений в рентгеновских лучах образца из чистого элемента для различных размеров растра. Это может быть выполнено в каждом спектрометре для каждого кристалла. К счастью, такие связанные с фокусировкой трудности отсутствуют в системе с дисперсией по энергии, которая позволяет рассматривать большую площадь образца даже при коллимации (рис. 5.41, гл. 5). [c.300]

    Как видно из рис. 4.1, поглощение N1- и Со-фильтров почти одинаково для всех волн, кроме заключенных в интервале между 1,487 и 1,607 А, где Ni-фильтp поглощает слабее, чем Со-фильтр. Если источником рентгеновского излучения является трубка с медным анодом, то эта полоса включает /Са-излучение длиной волны X = 1,54 А и узкую полоску сплошного спектра относительно слабой интенсивности. Если кривые интенсивности получены в одинаковых условиях, то, вычитая из кривой с Ы1-фильтром кривую с Со-фильтром, получим кривую, отвечающую излучению, близкому к Ка Более совершенная монохроматизация рентгеновского излучения достигается отражением от монокристаллов (кварц, германий, кремний, графит, фтористый литий). Кристалл-монохроматор представляет собой пластинку, полученную скалыванием по плоскости спайности кристалла. [c.92]


    Но вернемся к возможности использования лазерного излучения независимо от его происхождения. Максимальная мощность излучения в непрерывном режиме генерации лазеров достигает 105 в, а в импульсном режиме—Ю В, Значение длин волн генерируемого излучения покрывает видимый диапазон, захватывая инфракрасную (до 2,6-10- нм) и ультрафиолетовую (до 370 нм) области, В настоящее время ведутся работы по расширению диапазона длин волн до 126 нм и рассматривается возможность создания лазерных источников рентгеновского -излучения. [c.102]

    При использовании в качестве источника рентгеновского излучения синхротрона применение МСР не имеет преимущества, так как этот источник дает коллимированное излучение, причем можно получить качественный профиль резиста во всем экспонированном поле. Использование МСР, однако, целесообразно при работе с квазиточечными источниками рентгеновского излучения. Определяющим фактором в этом случае является чувствительность резиста, а также возможность коррекции косого профиля рельефа резиста, который образуется, когда линейные размеры экспонируемого участка сравнимы с расстоянием источника до подложки [6]. Квазиточечные источники рентгеновского излучения работают [c.270]

    Для РФЭС обычно используют рентгеновское излучение с энер-ией 1200—1400 эВ. Первый рентгеноэлектронный спектрометр [мел источник рентгеновских фотонов, дававший/Са,, 2 излу-ение алюминия с энергией 1486,6 эВ. В методе УФ—ФЭС изучае-[ое вещество облучается фотонами с энергией 21,22 эВ (резонанс-(ые линии Не) или 40,81 эВ (линии Не+). [c.217]

    Переходы внутренних электронов возможны только при условии предварительного образования вакансии на внутренней оболочке вследствие ионизации атома. Ионизация может быть вызвана действием внешнего источника рентгеновского излучения (рис. 14.2, г,ё), пучка высокоэнергетических электронов (рис. 14.2, д,ж) и др. [c.353]

    Однако в противоположность УФС естественная ширина линий обычных источников рентгеновских лучей РФС довольно значительна и играет большую роль в определении полуширины экспфиментально наблюдаемых спектральных линий [27]. В РФС обычно используют рентгеновский дублет 011 2, а это рентгеновское излучение образуется в том случае, когда электроны падают из оболочек Ьц и Ьщ (спин-орбитальное расщепление 2р-атомных уровней) в дырку оболочки К (1.5-атомный уровень). Естественная ширина линий, связанная либо с переходом Ь,1 -> К, либо с переходом Ьщ К, составляет 0,7 эВ для рентгеновского излучения А1 в этом случае дублеты перекрываются, приводя к эффективной ширине 1,0 эВ. Магниевое рентгеновское излучение Хо(1а2 состоит из дублета шириной 0,8 эВ. Источники рентгеновских лучей с большими энергиями (например, Сг, Си или Мо) характеризуются шириной дублетной компоненты, превьппающей 1,0 эВ. Таким образом, эффективный предел ширины линий РФС устанавливается естественной шириной источника рентгеновского излучения, несколько модифицированной естественной шириной, связанной с уровнем, с которого происходит фотоионизация. Некоторые вклады обусловлены также недостатками приборов. При изучении твердых веществ экспфиментально наблюдаемая полуширина спектральных линий РФС для пиков С15, N5 , Рзр, 82 и подобных им составляет 1,5 эВ. Эксперименты РФС с газообразными веществами дают значительно более узкие линии. Например, полуширина линии Ые для газообразного неона составляет 0,8 эВ [27]. Разница в полуширине линий для газообраз- [c.335]

    Какое относительное число отражений можно получить для [ u2(treD)j( N)2](BPh4)2, используя медный (>.= 1,54 A) и молибденовый (X = = 0,712 А) источники рентгеновских лучей (Для получения более подробной информации см. задачу 1.) [c.406]

    Рентгеновские лучи рассеиваются в кристаллах электронами, поэтому их можно считать источником рентгеновских лучей при дифракции. Брэгг ввел предположение, согласно которому рентгеновские лучи отражаются от набора плоскостей в кристалле. Для данного набора плоскостей hkl) отражение пучка монохроматического излучения происходит только под определенным углом, который определяется длиной волны рентгеновских лучей и расстоянием между плоскостями в кристалле. Эти переменные связаны уравнением Брэгга, которое можно вывести, воспользовавшись рис. 19.7, где горизонтальные линии представляют собой набор плоскостей в кристалле, разделенных расстоянием d. Плоскость AB перпендикулярна пучку падающих параллельно монохроматических рентгеновских лучей, а плоскость LMN — отраженным лучам. По мере изменения угла падения 0 отражение будет наблюдаться только тогда, когда волны находятся в фазе у плоскости LMN, т. е. когда разность расстояний между плоскостями AB и LAIN, измеренная вдоль лучей, отраженных от различных плоскостей, есть целое число, кратное длине волны. Это происходит, когда [c.572]

    Для проведения рентгеносъемки в камерах, требующих использования острофокусного источника рентгеновского излучения, отечественная промышленность выпускает рентгеновские аппараты УРС-0,1 и УРС-0,02. В рентгеновском аппарате УРС-0,1 применяется трубка БСВ-7, размеры оптического фокуса которой [c.126]

    Источником рентгеновского излучения, используемым в рентгенофазовом и рентгеноструктурном анализе, обычно является рентгеновская трубка. В рентгеновской трубке поток электронов, испускаемый вольфрамовой спиралью (катодом), ускоряется из-за большой разности потенциалов между к атодом и анодом (несколько десятков киловольт, кВ) и ударяется об анод. При этом происходят два основных процесса - торможениа электронов (с одновременным возбуждением тепловых колебаний, т.е, нагревом анода и испусканием рентгеновских квантов, дающих сплошной спектр) и ионизация атомов (удаление электронов с внутренних и внешних электронных оболочек атомов). За счет последующих электронных переходов происходит излучение рентгеновских квантов, дающих линейчатый, или характеристический спектр, вид которого определяется материалом анода. [c.6]

    Экспериментальное осуществление-ФЭ- и РЭ-спектроскопии довольно несложно. На рис. 86 показана схема установки для РЭ-сиектроскоиии (РЭ-сиектрометр). Рентгеновские кванты Нл- из анода рентгеновской трубки 1 попадают на исследуемый образец 2, выбивая электроны от атомов, входящих в состав образца. Разложение электронов в спектр и фокусировка их по энергиям кин производится с помощью магнитного или электростатического поля сферического конденсатора 3. При некоторой напряженности поля электроны, имеющие определенную кинетическую энергию, отклоняются по дуге и попадают в счетчик. Последний сортирует испускаемые веществом электроны по их кинетическим энергиям Енин- Таким образом, зная энергию источника облучения (монохроматическое рентгеновское излучение с энергией Ьу) и экспериментально определяя кин, легко найти Есв по (VI. 13). В ФЭ-спектрометре вместо источника рентгеновских квантов (рентгеновская трубка) применяется источник монохроматического ультрафиолетового излучения. [c.184]

    В качестве источников рентгеновского излучения применяют приборы серии РУПП (например, РУПП-120) и гамма-излучения, гамма-дефектоскопы типа Гаммарид (например, универсальный шланговый гамма-дефектоскоп Гаммарид-21М ). [c.99]

    Как показано на рис. 3.8, характеристическое рентгеновское излучение генерируется в значительной части области взаимодействия, образованной рассеянными в твердом теле электронами. Чтобы предсказать глубину, на которой возникает рентгеновское излучение, или глубину генерации рентгеновского излучения , и размер источника рентгеновского излучения (пространственное разрешение в рентгеновском излучении), нужно знать глубину проникновения электронов. Как было показано при рассмотрении глубины проникновения электронов, уравнения для пробега электрона в общем случае имеют вид (например, пробег по Канайе и Окаяме [уравнение (3.10)]) [c.80]

    В приборах со сфокусированным пучком злектронов сигнал рентгеновского излучения довольно слабый, и можно полагать, что он исходит из точечного источника. Поэтому рентгеновские спектрометры с полной фокусировкой, работающие с изогнутым кристаллом, более широко используются по сравнению с спектрометрами, имеющими плоский кристалл. Спектрометры последнего типа обычно используются в рентгеновском эмиссионном анализе при возбуждении с помощью рентгеновской трубки. В спектрометре с полной фокусировкой типа Иоганссона, схема которого приведена на рис. 5.3, точечный источник рентгеновского излучения, образец, кристалл-анализатор и детектор перемещаются по одному и тому же кругу радиуса R, называемому кругом фокусировки. Более того, кристалл изгибается так, чтобы кристаллические плоскости имели радиус кривизны 2R, а сама поверхность кристалла шлифуется до кривизны радиуса R. При такой геометрии все рентгеновские лучи, выходящие из точечного источника, будут падать на поверхность кристалла под одним и тем же углом 0 и фокусироваться в одной и той же точке на детектО ре. Этим обеспечивается максимальная эффективность сбора рентгеновского излучения в спектрометре без потери высокого разрешения по длинам волн. Очевидно, что в случае плоского кристалла угол падения рентгеновских лучей будет изменяться по длине кристалла, что. приводит к уширению и возможному наложению пико1В, вследствие чего уменьшаются максимальная интенсивность пика и отношение сигнал/фон. Хотя применение щелей Соллера дает возможность получить более параллельный пучок лучей, падающих на кристалл, однако и в этом случае не удается избежать потери интенсивности сигнала. [c.193]

    Отражения более высоких порядков имеют место при значениях Ь, кратных его значению для отражений первого порядка. Обычно в спектрометрах выдаются показания непосредственно в значениях Ь. Реально в большинстве спектрометров с полной фокусировкой используются кристаллы, лишь изогнутые по радиусу кривизны 2Н, без шлифовки их поверхности до полного совпадения с кругом фокусировки, так как шлифовка кристалла приводит к потере разрешающей способности из-за увеличения количества дефектО В и зон с мозаичной структурой. Такой компромиссный вариант, известный как оптика Иоганна, приводит к некоторой расфокусировке изображения на детекторе, но не вызывает заметного ухудшения разрешающей способности. В другом типе спектрометра с оптикой Иоганна поддерживается постоянньгм расстояние от источника до кристалла и кристалл изгибается так, чтобы К менялась с изменением Я в соответствии с (5.2). Несмотря на то что механическое устройство спектрометра такого типа несколько проще, чем линейного спектрометра, лишь только некоторые кристаллы, такие, как слюда и Ь1Р, допускают повторный изгиб без значительных повреждений. По этой причине спектрометры с изгибаемым кристаллом практически не используются в микроанализе. Оптика Иоганна была реализована в другом приборе — в спектрометре с полуфокусировкой , в котором также остается постоянным расстояние от источника до кристалла. Но в этом приборе в карусельном устройстве монтируются несколько изогнутых кристаллов с различными радиусами кривизны, каждый из которых можно устанавливать в рабочее положение, вместо одного изгибаемого кристалла. Однако условие фокусировки для каждого кристалла строго выполняется только для одной длины волны, и поэтому для других длин волн будут иметь место некоторая расфокусировка и потеря разрешающей способности и максимальной интенсивности. Достоинство этого устройства заключается в том, что положение источника рентгеновского излучения на круге фокусировки менее критично, в связи с чем рентгеновское изображение, получаемое при сканировании электронного луча по поверхности образца, менее подвержено влиянию эффектов расфокусировки, поскольку изображение уже расфокусировано в целом. [c.194]

    СКОЛЬКИМИ кристалл-дифракцнонными спектрометрами. Наличие нескольких спектрометров, каждый из которых имеет несколько кристаллов, необходимо не только для лроведения анализа одновременно по нескольким элементам, но также позволяет оптимизировать условия анализа в различных диапазонах длин волн, испэ-... уя имеющийся набор кристаллов. В табл. 5.1 приведены параметры наиболее распространенных кристаллов-анализаторов сравнительное разрешение, отражательная способность и величина межплоскостного расстояния. Так как sin0 не может быть больше единицы, то, согласно закону Брэгга, верхний предел максимальной длины волны, дифрагировавшей на любом данном кристалле, составляет 2d. Практические пределы зависят от конструкции спектрометра, поскольку из рис. 5.3 очевидно, что при sin 0=1, т. е. при 0 = 90°, детектор должен был бы находиться в точке источника рентгеновского излучения внутри электронно-оптической колонны. Нижний предел анализируемой длины волны следует из уравнения (5.2), поскольку становится физически невозможным придвигать кристалл-анализатор слишком близко к образцу. [c.196]

    Переход к новому источнику рентгеновского излучения ослабил требования, предъявляемые к размерам кристаллов, что особенно важно в структурном анализе высокомолекулярных белков и сложных комплексов, имеющих крупные элементарные ячейки. Сплошной спектр синхротронной радиации и легкость выбора любой длины волны монохроматического излучения сделали возможным подойти к решению фазовой проблемы и разработать метод мультиволновой аномальной дифракции, требующий для решения фазовой проблемы лишь одного кристаллического образца. Существенным дополнением к этому методу стал генно-инженерный способ получения в ауксотрофных клетках аминокислотных последовательностей, в которых все остатки метионина заменены на селенометионин. Использование [8е-Ме1]-белков не только освобождало [c.74]

    Другая быстродействующая рентгеновская система с бумажными копиями использует бумажную линию Индастрекс Инстант 600 фирмы Кодак . В нее входят 4 компонента специальная чувствительная бумага, два типа экранов, усиливающих изображение, процессор и два реактива для процессора. Бумага покрыта эмульсией галоида серебра, содержащей реагенты для обработки, и может подвергаться действию рентгеновских лучей в диапазоне 20-300 кВ или наиболее общих источников рентгеновского или гамма-излучения типа иридия-192 или кобальта-60. Бумага размещается так, что покрытая эмульсией сторона контактирует с усиливающим экраном когда фиксирующее устройство открывается для доступа рентгеновского излучения, экран усилителя изображения начинает излучать в ультрафиолетовом диапазоне, к которому бумага чувствительна. Бумага проходит проявление в светонепроницаемом корпусе, в результате чего получается влажно-сырая радиограмма в течение 10 с. Если это изображение гюдвергнуть закреплению, промывке и просушке, оно может сохраняться не менее 7 лет. [c.176]

    В 1912 г. Лауэ доказал, что рентгеновские лучи аналогич ны по своей природе лучам света, но отличаются от последних значительно меньшей (примерно в 10000 раз) длиной волны. Длины волн рентгеновских лучей оказались одного порядка с межатомными расстояниями в кристаллах. В том же году В. Л. Брегг и несколько нозже Г. В. Вульф вывели формулу, связывающую межнлоско-стные расстояния в кристаллах й с длиной волны рентгеновских лучей А- И углами скольжения 0. Одновременно В. Г. Брегг И В. Л. Брегг определили экспериментально величины й для разных кристаллов. Схема опыта Бреггов показана на рис. 136, где 8 — источник рентгеновских лучей, К — испытуемый кристалл, 0 — угол скольжения (дополнительный до 90° к углу падения), I — ионизационная камера. Кристалл монтирован на оси, перпендикулярной к плоскости чертежа. Поворотами около этой оси можно изменять углы падения рентгеновских лучей на кристалл. Вокруг оси может вращаться и камера 7, с помощью которой улавливается отраженный луч. [c.106]

    Наряду с изучением биологических макромолекул для развития биофизики необходимы структурные исследования надмолекулярных биологических систем в нативном состоянии, например мембран, мышечных волокон и т. д. Перспективы этих исследований определяются развитием скоростной рентгенографии, т. е. созданием мощных источников рентгеновского излучения с мало расходящимися пучками лучей. По-видимому, здесь может оказаться эффективным синхротронное, магнитнотормозное излучение, возникающее при центростремительном ускорении электронов в магнитном поле. В отличие от обычного рентгеновского излучения, синхротронное излучение характеризуется большой мощностью, малой расходимостью пучка, но высокой степенью поляризации (см. [37]). [c.281]

    Флуоресцентный рентгеноспектральный метод анализа довольно сильно отличается от предыдущего метода принципом и используемой аппаратурой. Спектры флуоресценции возбуждаются при облучении образца в твердом виде или даже в растворе внешним источником рентгеновских лучей (запаянная рентгеновская трубка). Для этой же цели оказалось возможным использовать источники с радиоактивными изотопами, в частности Ти с его рентгеновским излучением с энергией 84 Кэв [333]. Спектры флуоресценции аналогичны первичным рентгеновским спектрам, но они недостаточно интенсивны, чтобы их можно было регистрировать фотографическим способом, поэтому в данном случае] применяют гейгеровские или пропорциональные счетчики квантов. [c.208]


Смотреть страницы где упоминается термин Источники рентгеновские: [c.129]    [c.7]    [c.112]    [c.124]    [c.131]    [c.132]    [c.27]    [c.322]    [c.322]    [c.323]    [c.19]    [c.243]    [c.40]   
Инструментальные методы химического анализа (1989) -- [ c.227 ]

Руководство по аналитической химии (1975) -- [ c.204 , c.322 ]




ПОИСК







© 2025 chem21.info Реклама на сайте