Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод спектроскопии

    Гамма-резонансная ядерная флуоресценция, т. е, испускание и поглощение -квантов при ядерных переходах без затраты энергии на отдачу ядра, была открыта Р. Л. Мессбауэром в 1958 г. Эффект назван поэтому его именем, как и разработанный метод спектроскопии. Источником излучения и объектом, поглощающим его, являются ядра одного и того же изотопа, соответственно, в возбужденном и основном состояниях. В ядерной физике ядра с одинаковыми зарядами и массовыми числами, но разными энергиями и временами жизни (полураспада) называют изомерами. Бремя жизни изомеров играет огромную роль в гамма-резонансной спектроскопии, определяя ширину линий. Большим достоинством метода является высокая монохроматичность -излучения (узость линии) и высокое спектральное разрешение. Положение резонансного сигнала или так называемый изомерный сдвиг зависит от электронного окружения ядер. Метод мессбауэровской спектроскопии позволяет получить такие же данные о градиенте электрического поля на ядрах, как и метод спектроскопии ЯКР, [c.88]


    Ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР) — два метода радиоспектроскопии, позволяющие изучать структуру и динамику молекул, радикалов, ионов в конденсированных и газовой фазах вещества. Спектры ЯМР обладают высокой специфичностью и широко применяются для идентификации соединений, в структурно-аналитических целях, а также для изучения быстрых обменных процессов. Спектроскопия ЭПР — метод исследования парамагнитных частиц и центров, кинетики и механизмов процессов, происходящих с их участием. Особенно большой прогресс в развитии методов спектроскопии ЯМР и ЭПР, достигнутый в последние годы, связан с появлением импульсных фурье-спектрометров, двухмерной спектроскопии и техники множественного ядерного, электрон-ядерного и электрон-электрон-ного резонанса. [c.5]

    В табл. 13-4 указаны диапазоны электромагнитного излучения, энергия которого выражена в различных единицах, а также названы источники излучения и приемные устройства, применяемые в каждом диапазоне. Квантованный характер молекулярных энергетических уровней используется в современных спектроскопических исследованиях для идентификации молекул и выяснения их молекулярного строения. Например, изучение вращательных переходов методами спектроскопии в дальней ИК-области и микроволновой спектроскопии дает исключительно точные сведения [c.587]

    Вицинальные константы и константы более далекого взаимодействия спинов зависят от пространственного строения фрагментов (молекул). Например, по константам V идентифицируются цис-, транс-, UH-, анти-, поворотные и конформационные изомеры (см. табл. 1.7 и рис. 1.10) при условии статической изомерии, т. е. когда потенциальные барьеры изомеризации достаточно велики. Имеется также возможность изучения методом спектроскопии ЯМР, в частности, по константам спин-спинового взаимодействия хиральности молекул. [c.36]

    Рассмотренные молекулярные параметры энергия диссоциации, межъядерные расстояния, равновесная конфигурация, число симметрии — важны для химии не только как индивидуальные характеристики молекул. По ним можно рассчитать термодинамические свойства веществ и константы равновесия химических реакций. В нашей стране ведутся обширные исследования молекулярных параметров методами спектроскопии (В. И. Кондратьев, В. М. Татевский, Л. В. Гурвич, А. А.. Мальцев и др.), м асс-спектрометрии (Л. И. Горохов, Л. И. Сидоров и др.), газовой электронографии и другими физическими методами. [c.50]


    Если атом или молекула имеет один неспаренный электрон, магнитный момент частицы равен магнитному моменту электрона 1= /Т. Измерение парамагнитной восприимчивости позволяет обнаружить свободные радикалы, установить число неспаренных электронов в частице и т. п. Особенно большое значение для подобных исследований приобрел метод спектроскопии электронного парамагнитного резонанса (ЭПР). [c.43]

    Применение методов спектроскопии ЭПР в химических исследованиях весьма разнообразно. Но грубо можно говорить о двух направлениях— одном, касающемся в основном структурных аспектов, и другом — динамики процессов. К первому относится изучение структуры органических, неорганических и комплексных радикалов и ион-радикалов, парамагнитных центров в твердых телах и т. д., а ко второму — изучение механизмов и кинетики химических реакций, обменных процессов и т. д. [c.68]

    Для экспериментального изучения процессов диффузии в широкой окрестности критических точек расслаивания были использованы методика и установка, описанные в гп. II. 6, метод спектроскопии оптического смешения. Значения В определялись по полуширине спектральной линии рассеяния, по анализу спектров смешения. Та же установка позволяла измерить суммарную интенсивность излучения, зависящую от величины (д/1/дС ), и тем самым на основе (1У.1.3) проводить изучение подвижности в /30/. В результате исследований систем нитробензол-гептан, нитробензол-декан и метиловый спирт-гептан /92, 93/ было выяснено, что показатель степени в (1У.1.9) лежит в пределах 0,63 + 0,04, а для 1д/1 /вс ) и имеют место соотношения [c.57]

    Методом спектроскопии КР легко изучать также низкочастотные колебания, тогда как снятие ИК-спектров в низкочастотной области сопряжено со значительными трудностями. Спектроскопия КР имеет преимущества перед ИК-спектроскопией и при изучении химических равновесий в растворах, так как концентрации растворенных веществ обычно более точно определяются по интенсивностям линий КР. Кроме того, в ИК-спектрах часто трудно отличить полосы основных колебаний от обертонов и комбинационных полос. В спектрах КР эта проблема обычно не возникает ввиду низкой интенсивности полос обертонов и комбинационных частот. [c.222]

    С целью изучения механизма химической деструкции НПАВ использован эффективный метод изучения взаимодействия гидрофильных фрагментов мицеллярных растворов методом спектроскопии ЯМР Н с добавкой сдвигающих реагентов [48]. Введение шифт-реагентов в исследуемый раствор вызывает смещение резонансных линий в спектрах ЯМР Н. Эффективными шифт-реагентами являются соли тербия [49]. [c.43]

    Привести примеры определений методом спектроскопии пламен в неорганической химии, органической, в биологии и медицине. [c.127]

    При угловой структуре радикала спектр ЭПР в зависимости от общего числа электронов в системе и анизотропии образца имеет характерный вид, позволяя определять спиновую плотность на центральном атоме и оценивать валентный угол. Так, например, для радикала NO2 было получено значение валентного угла 133°, совпадающее в пределах ошибок с установленным прямыми экспериментальными методами (134°). В ион-радикале СО2" идентифицированном методом спектроскопии ЭПР в облученном формиате натрия, локализация неспаренного электрона на оказалась больше сравнительно с N в NO2 , что соответствует большему значению валентного угла (ближе к 180°). Эти выводы согласуются с особенностями реакционной способности этих частиц большая склонность ион-радикала O2 к димеризации, присоединение водорода к атому углерода, а не к кислороду, как в радикале NO2, и т. д. [c.69]

    Интенсивность линий в спектрах ЯМР может использоваться не только для расшифровки спектров и структуры молекул, но, как очевидно, и для количественного анализа. Метод спектроскопии ЯМР применяется в этих целях как в статических условиях (например, ЯМР и на других ядрах) при соответствующей калибровке и принятии мер предосторожности для устранения ошибок из-за явлений насыщения переходов, так и в динамических условиях, о чем уже говорилось. [c.39]

    Метод спектроскопии ЭПР, являющийся одним из довольно широко применяемых и продуктивных физических методов структурных и кинетических исследований в химии, применим только к парамагнитным образцам. К таким образцам относятся частицы, имеющие неспаренные электроны — свободные радикалы, ион-радикалы, молекулы в триплетных состояниях, комплексы переходных металлов и др., а также фазы, содержащие свободные электроны и другие парамагнитные центры. [c.54]

    Выше рассматривались в основном системы с одним неспаренным электроном, но существует много парамагнитных систем, изучаемых методом спектроскопии ЭПР, в которых имеется несколько неспаренных электронов. Это, например, комплексы переходных металлов, молекулы в триплетных состояниях и др. [c.63]

    Следует обратить внимание на то, что парамагнитные соединения обычно не дают хороших спектров ЯМР в них резонансные полосы очень широки, так что при изучении этих соединений большое преимущество имеет спектроскопия ЭПР, позволяющая получать структурную информацию, в том числе аналогичную даваемой методом спектроскопии ЯМР. [c.72]


    Получают и исследуют методом спектроскопии ЭПР также гидратированные и другие сольватированные и захваченные электроны, например, в застеклованных спиртах, расплавах солей и т. д. [c.77]

    Постоянное совершенствование и появление принципиально новой техники эксперимента, автоматизация и сочетание с ЭВМ открывают все новые возможности и перспективы применения методов. В качестве примеров достижений бурно развивающегося приборостроения в рассматриваемой области можно указать на современные импульсные фурье-спектрометры, появление техники двухмерной спектроскопии ЯМР и уже упоминавшегося множественного резонанса. Повышение чувствительности, спектрального, временного и пространственного разрешения, которое дает эта новая техника, приводит к дальнейшему расширению получаемой информации и поднятию ее на другой, более высокий уровень. Понятно поэтому, что интерес к развитию теории методов спектроскопии ЯМР и ЭПР и практическому их применению не только не ослабевает, но продолжает неуклонно расти. [c.85]

    В методе спектроскопии ЯКР, как и в других физических методах исследования, химики всегда стараются провести корреляцию получаемых данных с химической информацией и данными других методов. Данные ЯКР сопоставляются, в частности, с данными ЯМР, мессбауэровскими и ИК спектрами и т. д. Найдены полезные корреляции частот ЯКР некоторых изотопов с константами ионизации рКа карбоновых кислот, ст-параметрами Гаммета и Тафта, индексами реакционной способности и др. [c.109]

    Метод спектроскопии ЯКР, конечно, менее широко распространен в химических лабораториях, чем многие другие физические методы. Это отчасти связано со сложностью и малой доступностью аппаратуры и жесткими условиями проведения эксперимента (низкие температуры, термостатирование и т. д.), а также с ограниченностью объектов определенный круг ядер, кристаллические образцы, причем лучше монокристаллы, чем порошки. Масса образцов, необходимая для исследования, сравнительно велика и составляет от десятых до нескольких граммов и даже десятков граммов. Но хотя и круг решаемых этим методом проблем тоже сравнительно не так широк, многие получаемые с его помощью данные бывают уникальны, и спектроскопия ЯКР в целом является очень ценным методом в химических исследованиях. [c.111]

    Конечно, методы спектроскопии ЯКР и мессбауэровской спектроскопии не столь широко распространены и применяются в химических исследованиях, как ЯМР, ИК или масс-спектроскопия и некоторые другие. Это связано как с малой доступностью и сложностью приборного оборудования, так и с ограниченностью круга объектов и решаемых проблем. В обоих методах эффекты, на которых они основаны, наблюдаются на ядрах далеко не любых элементов и изотопов, а, кроме того, исследоваться могут только твердые образцы, количества которых, необходимые для работы, довольно велики. [c.131]

    Идеальную схему количественного определения концентрации элемента методами спектроскопии можно разделить на три этапа стадии 1) измерение аналитических сигналов л , регистрируемых прибором 2) введение поправки, учитывающей долю постороннего сигнала 3) определение концентрации элемента. [c.82]

    Методом спектроскопии ЭПР изучен довольно большой ряд четырехатомных неорганических радикалов АВз, которые, вообще говоря, могут иметь плоское или пирамидальное строение. Для радикалов IO3 , СО3- и других найдена осевая симметрия g- и а-тензоров и определены их параллельные и перпендикулярные компоненты, а для радикала NO3 — существенная асимметрия тензоров. По данным спектроскопии ЭПР, как и других методов, например колебательной спектроскопии, конфигурация радикалов СНз и NH3+ близка к плоской. [c.69]

    Применение других методов спектроскопии для аналитических целей [c.338]

    Для определения природы лигандных центров, геометрии комплексов и их ассоциации с я-системами применительно к нефтяным ванадилсодержащпм соединениям детально разработано приложение метода спектроскопии ЭПР [902]. Однако никаких однозначных выводов о структуре этих соединений на этой основе пока сделать не удалось. [c.167]

    Для исследования состава поверхностных слоев, определения функциональных групп на поверхности, межатомных и межмоле-кулярных связей широко используются традиционные оптические методы спектроскопия (инфракрасная, ультрафиолетовая, комбинационного рассеяния), рентгенография, электронография и др. Их применение для таких исследований отличается специфическими способами приготовления испытуемых образцов, поскольку информация должна поступать из очень тонкой области системы, тол-щиной порядка нескольких моноатомных или мономолекулярных слоев. Названные методы исследования достаточно подробно из лагаются в курсах физики и физической химии. [c.246]

    Артамонов В.Г.,Маджарова Е.В. Исследование коллективных мод теплового движения методом спектроскопии рассеянного излучения. 1. Исследование тонкой структуры поляризованных спектров оптического рассеяния в жидкости//Физика и физикохимия жидкостей. М., 1980. Вып. 4. С. 142-148. [c.89]

    Оверхаузера (ЯЭО), на котором и основан метод спектроскопии м ежъ яд е р н о г о двойного резонанса (ИНДОР ). [c.50]

    Нсдавио япопские исследователи снова изучали эту реакцию и методом спектроскопии но Раману установили, что при пиролизе додециловых эфиров уксусной, пропионовой и масля1гой кислот такжо образуется чистый доде-цен-1 183]. [c.683]

    Попонов B,M, Фрагментарный анализ угле- и нефтепродуктов методом спектроскопии ЯМР- С.-Автореферат дисс к х.н. Иркутск ИТУ, 1986, [c.89]

    В 1932—1934 гг. на основе сопоставления продуктов окисления индивидуальных ароматических углеводородов и углеводородов, выделенных из высококипящих фракций нефти, Н. И. Черножуковым и С. Э. Крейном было предсказано присутствие углеводородов смешанного нафтено-ароматиче-ского строения. Подтверждением этого положения явились результаты работ американских ученых и последующих работ, выполненных на кафедре учениками Николая Ивановича. В этих шботах методами спектроскопии в узких обессеренных фракциях ароматических углеводородов были обнаружены нафтено-ароматические структуры. [c.8]

    Методом УФ-спектроскопии изучена комплексообразующая способность ПФР по отношению к мегаллопорфиринам нефтей. Детальное изучение процесса взаимодействия методом спектроскопии позволит установить характер и механизм взаимодействия ПФР с ванадилпорфиринами. Так,например, если рассматривать УФ-спектры дибензо-18-краун-6 и ванадилпорфиринов, то по смещению максимума полосы поглощения видно, что происходит образование комплекса. Подобрано оптимальное соотношение реа-гентгванадилпорфирин - 1 1, при котором отмечается максимальная вероятность образования комплекса. Установлено, что увеличение температуры до 50°С приводит к увеличению комплексообразующей способности краун-эфира. [c.138]

    В спектрах ЭЛДОР могут наблюдаться также линии, соответствующие накачке запрещенных переходов Wx, Х х ), из которых может быть получена информация как о константах СТВ, так и о средних частотах ЯМР. Вообще методы ЭЛДОР и ДЭЯР являются взаимно дополняющими, причем первый более информативен в случае систем с сильными, а ДЭЯР —со слабыми сверхтонкими взаимодействиями. Преимущества методов двойного резонанса перед обычной спектроскопией ЭПР в достижении не только более высокого спектрального, но и временного разрешения. Этими методами плодотворно исследуются различные релаксационные процессы. Методом ЭЛДОР, например, можно наблюдать более медленные, чем в спектроскопии ЭПР, процессы, время протекания которых сравнимо с временем электронной спиновой релаксации Т е. Методами спектроскопии двойного резонанса достигается также высокое пространственное разрешение при необходимости изучения рассредоточенных парамагнитных центров в образце. Именно методом ДЭЯР, например, изучались / -центры в кристаллах галогенидов металлов и устанавливалась протяженность размытия плотности захваченного анионной вакансией электрона. [c.82]

    Значения квадрупольных моментов ядер обычно известны, и экспериментальные исследования спектров ЯКР проводятся для получения частот переходов, констант квадрупольного взаимодействия, а значит, е ипараметров асимметрии градиента электрического поля Т1 (см. ниже), т. е. структурных данных, информации о распределении зарядов и характере химических связей. Например, чем больше ионный характер связи с данным атомом, тем меньше величина градиента поля и e qQ. Обратно, чем более ковалентной является химическая связь, тем выше соответствующая константа квадрупольного взаимодействия. Данные ЯКР предоставляют возможность экспериментальной проверки результатов квантово-механических расчетов и приближенного рассмотрения ряда проблем, связанных с внутри- и межмолекулярными взаимодействиями. Метод спектроскопии ЯКР важен как аналитический при работе с твердыми веществами, для которых не представляет трудности выращивание больших монокристаллов. [c.91]

    Метод спектроскопии внутреннего отражения был разработан одновременно Фареифортом и Харриком. Предложенный Фаренфортом метод спектроскопии НПВО основан на использовании однократного отрам<ения для получения спектров мас- [c.132]

    Существование или отсутствие электрического дипольного момента у молекулы связано с ее симметрией. Так, молекулы, обладающие центром симметрии, неполярны. К ним относятся двухатомные молекулы с одинаковыми ядрами (Hj, Oj, l и др.). Напротив, двухатомные молекулы с разными ядрами, такие, как НС1, Na l и т. п., — полярны. В настоящее время разработаны различные методы определения дипольных моментов молекул в растворах и в газообразном состоянии, в том числе прецизионные методы спектроскопии в микроволновом радиодиапазоне. Дипольные моменты различных молекул имеют порядок от ОД до 10 Д. [c.72]

    Максимальное среднее значение мольной массы Мп, которое можно определить методом спектроскопии, предопределяется наименьшим определяемым содержанием Жц концевых групп. Измерения интенсивности (площади) сигнала концевой группы у производится в области уа< у< уа- При обычных условиях измерения для Оу = onst справедливо [c.421]

    Третий тип структурной нежесткости связан с молекулярными перегруппировками, обусловленными процессами разрыва — образования химических связей. Быстрые и обратимые перегруппировки этого типа называют таутомерными. Одним из ярких примеров структурной нежесткости, вызванной таутомерными перегруппировками, является реакция взаимопревращения вырожденных изомеров (топомеров) бульвалена, регистрируемая методом спектроскопии ядерного магнитного резонанса  [c.457]


Библиография для Метод спектроскопии: [c.282]   
Смотреть страницы где упоминается термин Метод спектроскопии: [c.383]    [c.223]    [c.604]    [c.682]    [c.227]    [c.132]    [c.18]    [c.267]    [c.69]    [c.140]   
Смотреть главы в:

Методы исследования состава эластомеров -> Метод спектроскопии

Методы исследования состава эластомеров -> Метод спектроскопии

Методы исследования состава эластомеров -> Метод спектроскопии

Методы исследования состава эластомеров -> Метод спектроскопии

Методы исследования состава эластомеров -> Метод спектроскопии

Методы исследования состава эластомеров -> Метод спектроскопии

Качественный анализ полимеров -> Метод спектроскопии


Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень (1999) -- [ c.473 ]

Химия координационных соединений (1985) -- [ c.176 , c.179 , c.192 , c.203 , c.221 ]




ПОИСК







© 2025 chem21.info Реклама на сайте