Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические элементы амфотерные

    Элементы подгруппы германия германий — олово — свинец. Простые вещества, их получение и свойства. Валентность в соединениях. Окиси и гидроокиси двухвалентных элементов. Амфотерный характер их. Наиболее важные соли и их химические свойства. Двуокиси олова и свинца. [c.235]

    Теория Бренстеда — Лоури объединяет в общую группу прото-литических реакций все виды взаимодействия между кислотами и основаниями, в том числе нейтрализацию, гидролиз, диссоциацию кислот и оснований, распад растворителя на ионы и др. Из определения кислоты и основания по протолитической теории вытекает, что все атомы, характеризующиеся большой электроотрицательностью, могут образовывать кислоты, так как сильнее притягивают электроны, чем протоны. Наоборот, атомы, обладающие малой электроотрицательностью, могут образовывать основания, так как они сильнее притягивают протоны, чем электроны. Отсюда следует, что в высшем состоянии окисления элемент должен образовать соединение, со свойствами кислоты, так как электроотрицательность центрального комплексообразующего атома возрастает с повышением состояния окисления химического элемента. Например, соединения Мп (И) и Мп (ИГ) обладают основными свойствами, соединения Мп (IV) амфотерны, Мп (VI) и Мп (VII) образуют кислоты. Аналогичные соотношения наблюдаются у хрома, ванадия и других элементов. Можно сказать, что основания обладают присущими им свойствами не потому, что они способны отщеплять гидроксильный ион, но вследствие того, что гидроксильный ион способен присоединять протон с образованием воды. [c.54]


    Французский химик Луи Никола Воклен в 1797 г. демонстрировал в Парижской академии наук свойства оксида открытого им нового химического элемента — хрома. Он сказал, что это удивительное зеленое вещество может взаимодействовать как с кислотами, так и со щелочами. В те времена химики могли только догадываться о возможной амфотерности оксидов и гидроксидов. Воклен подействовал на оксид хрома серной [c.73]

    Периодический закон и Периодическая система химических элементов имеют и большое философское значение. В них объективно отражается действие законов материалистической диалектики и, прежде всего, закона перехода количества в качество. Так, каждому порядковому номеру (количество) соответствует химический элемент с индивидуальными свойствами (каче- ство). В Периодической системе наглядно проявляется также закон единства и борьбы противоположностей, который реализуется в существовании амфотерных оксидов и гидроксидов. [c.109]

    Как известно, наиболее ярким проявлением двойственности принято считать амфотерность, которую понимают как способность некоторых веществ в зависимости от условий проявлять то кислотные, то основные, а у химических элементов — то металлические, то неметаллические свойства. [c.215]

    К амфотерным веществам пока относят по существу два типа веществ. К первому из них принадлежат те, у которых двойственность поведения обусловлена наличием различных функциональных групп (так называемая нескрытая ярко проявляющаяся двойственность). К этому типу веществ относят, в частности, белки. Ко второму типу относят вещества, у которых наблюдается проявление двойственности, но причины, обусловливающие последнюю, скрыты от исследователя, так как образующиеся в процессе химических реакций производные по своему строению не соответствуют структуре исходных веществ ( скрытая двойственность). Если придерживаться точки зрения, что двойственная реакционная способность есть явление исключительно распространенное, то, очевидно, следует выделить еще одну группу веществ с так называемой скрытой трудно проявляющейся двойственностью. Таково проявление двойственности при ряде процессов кислотно-основного взаимодействия. Примерно то же имеет место и при окислительно-восстановительном взаимодействии, где также наблюдается яркая и скрытая , трудно и легко проявляющаяся двойственность, выражающаяся в способности одного и того же химического элемента, в зависимости от условий и сореагента, быть либо окислителем, либо восстановителем, либо и тем и другим одновременно (самоокисление — самовосстановление). [c.215]

    Химические элементы, которые при своем превращении могут давать и кислоты и основания, называются амфотерными элементами, а соединения указанного типа — амфотерными соединениями. С ионной точки зрения соединения (гидроокиси), дающие одновременно и [c.130]


    Амфотерностью называют способность различных химических соединений в зависимости от условий реакции проявлять свойства кислот или оснований. Под амфотерностью химических элементов, например Ti, Sn, Pb, понимают их способность проявлять металлические и неметаллические свойства, что зависит от их положения в периодической системе. Амфотерными могут быть окислы, галогены, нитриды, карбиды и др. [c.51]

    Для определения кислоты и основания по протолитической теории вытекает, что все атомы, характеризующиеся большой электроотрицательностью, могут образовывать кислоты, так как сильнее притягивают электроны, чем протоны. Наоборот, атомы, обладающие малой электроотрицательностью, могут образовывать основания, так как они сильнее притягивают протоны, чем электроны. Отсюда следует, что в высших валентных состояниях элементы должны образовывать соединения, обладающие свойствами кислот, так как электроотрицательность центрального комплексообразующего атома возрастает с повышением валентности химического элемента. Например, соединения Мп (П) обладают основным характером, так же как и соединения Мп (Н1). Соединения Мп (IV) являются амфотерными. Мп (VI) и Мп (VII) образуют кислоты. Аналогичные соотношения наблюдаем у Сг, V и других элементов. [c.62]

    Химические элементы, которые при своем превращении могут давать и кислоты и основания, называются амфотерными элементами, а соединения указанного типа — амфотерными соединениями. С ионной точки зрения соединения (гидроокиси), дающие одновременно и ионы водорода и ионы гидроксила, называются амфотерными. Например, [c.105]

    Зависимость свойств химических элементов от величины атомной массы — яркая иллюстрация диалектического закона перехода количества в качество, а двойственность характера элементов, дающих амфотерные окислы,— закона единства и борьбы противоположностей. [c.86]

    Параллельно изучению двойственного реагирования органических соединений происходило изучение двойственной реакционной способности и неорганических веществ. Начиная со времени работ Берцелиуса, были подробно исследованы амфотерные свойства большого числа веществ воды, химических элементов, окислов и т. д., со всею определенностью показывающие двойственность их поведения при химическом взаимодей- [c.375]

Рис. 11. Двумерное представление данных о 64 химических элементах [56], образующих основные (7), кислотные (2) и амфотерные Рис. 11. <a href="/info/1541949">Двумерное представление</a> данных о 64 <a href="/info/2336">химических элементах</a> [56], <a href="/info/460974">образующих основные</a> (7), кислотные (2) и амфотерные
    Периодичность изменения химических свойств элементов на примере их бинарных соединений с водородо.м и оксидов. Кислотные, основные и амфотерные свойства. [c.302]

    Химические свойства элементов. Щелочные металлы. Щелочноземельные металлы, амфотерные свойства. [c.415]

    Как видно из приведенных примеров, химическая природа однотипных оксидов и сульфидов, гидроксидов и гидросульфидов закономерно изменяется в пределах периода. Сульфиды, как и оксиды, бывают основными, кислотными и амфотерными. Основные свойства проявляют сульфиды наиболее типичных металлических элементов, кислотные — сульфиды неметаллических элементов. Различие химической природы сульфидов проявляется в реакциях сольволиза и при взаимодействии сульфидов разной химической природы между собой. Так, [c.351]

    Химические свойства элементов V группы также изменяются закономерно азот н фосфор являются типичными неметаллами мышьяк и сурьма — амфотерные элементы с преобладанием (в большей степени у мышьяка и в меньшей у сурьмы) кислотных свойств над основными висмут — металл, у которого наряду с основными свойствами заметно проявляются также и кислотные. [c.79]

    В элементах побочных подгрупп изменение химических свойств в вертикальном направлении имеет свою специфику. В ПШ-под-группе от 8с к Ьа и Ас основные свойства элементов заметно усиливаются от амфотерных (у 5с) к ярко выраженным основным (Са— Ас), затем при достройке и /-подуровней при одном и том же числе слоев с элементами главных (А) подгрупп возрастает влияние увеличивающегося заряда ядра на валентные электроны. Это приводит к тому, что у элементов побочных подгрупп, в атомах которых завершается формирование внутренних слоев, может наблюдаться с увеличением Z возрастание ионизационных потенциалов, уменьшение химической активности, торможение нарастания радиусов атомов, ослабление основных свойств (например, в ряду Си — Ag— Аи). Химическая активность в этом ряду убывает с возрастанием порядкового номера, о чем свидетельствуют значения энергии Г иббса для бинарных соединений этих металлов. На золото сильное влияние оказывает лантаноидное сжатие. [c.92]


    Соедняения циркония и гафния напоминают соединения титана. Из оксидов устойчивыми являются только диоксиды, являющиеся ио химическому характеру амфотерными с преобладанием основных свойств. И.з галидов циркония и гафния наиболее устойчивы тетрагалиды, которые представляют собой летучие, легкоплавкие (за исключением фторидов) кристаллы, в расплавленном состоянии ие проводят электрический ток под действием воды гидролизуются, С водородом и элементами VA-, IVA- и ША-подгрупп периодической системы цирконий и гафний образуют соединения интерметаллидного характера — гидриды, нитриды, фосфиды, карбиды, силиды, бориды и т. д. — и ограниченные твердые растворы, В системах, образованных цирконием и гафнием с другими металлами, во многих случаях возникают интерметаллические соединения. [c.275]

    VI групп, примыкающие к диагонали бор — астат,— типичные полупроводники (т. е. их электрическая проводимость с повышением температуры увеличивается, а не уменьшается). Характерная черта этих элементов — образование амфотерных гидроксидов (с. 151). Наиболее многочисленны d-металлы. В периодической таблице химических элементов Д. И. Менделеева они расположены между S- и р-элементами и получили название переходных металлов. У атомов d-элементов происходит достройка d-орбиталей. Каждое семейство состоит из десяти d-элементов. Известны четыре d-семейства 3d, 4d, 5d, и 6d. Кроме скандия и цинка, все переходные металлы могут иметь несколько степеней окисления. Максимально возможная степень окисления d-металлов +8 (у осмия, например, OsOj). С ростом порядкового номера максимальная степень окисления возрастает от III группы до первого элемента VIII группы, а затем убывает. Эти элементы — типичные металлы. Химия изоэлектронных соединений d-элементов весьма похожа. Элементы разных периодов с аналогичной электронной структурой d-слоев образуют побочные подгруппы периодической системы (например, медь — серебро — золото, цинк — кадмий — ртуть и т. п.). Самая характерная особенность d-элементов — исключительная способность к комплексообра-зованию. Этим они резко отличаются от непереходных элементов. Химию комплексных соединений часто называют химией переходных металлов. [c.141]

    Химические элементы делятся в первом приближении на э,пементы с металлическими и неметаллическими свойствами. Однако многие элементы в соответствии с Периодическим законом проявляют одновременно в той или иной мере свойства металлов и неметаллов. Такие элементы называют амфотерными. [c.91]

    Двойственная реакционная способность химических элементов и их соединений, о которой шла речь выше, представляет одно из наиболее ярких проявлений единства противоположностей как закона объективного мира . Очевидно, вс-якое превращение вещества обусловливается взаимодействием противоположных по своему химическому характеру веществ А и В, среди которых вещество А может быть то кислотой, то основанием то окислителем, то зосстановителем то кетоном, то энолом... и т. д. в зависимости от химической природы катализатора или второго реагента В. Замечательно, что это было отмечено еще Берцелиусом, в свое время охарактеризовавшим амфотерность воды вода играет роль основания по отношению к кислотам,— говорил великий химик,— и роль кислоты по отношению к основаниям [27]. [c.378]

    Свойства простых веществ и соединений. Все металлы VIН группы имеют небольшой объем атомов, плотную упаковку кристаллической решетки п, как следствие этого, прочность металлической связи и высокие температуры плавления. Важной особенностью железа, кобальта и никеля является способность этих металлов к намагничиванию. Переменная степень окисления членов подгруппы VIIIB обусловливает отчасти и их разнообразнейшие каталитические свойства. Способность образовывать кислородные соединения в каждом ряду VIII группы быстро уменьшается с возрастанием порядкового номера. Железо окисляется легко, никель —с тру дом (а палладий и платина в этом отношении сходны с серебром и золотом). Гидроксиды элементов амфотерны с преобладанием основных свойств. Существуют соединения железа, например ферраты (К.2ре04), где атом Ре входит в состав аниона. Подобно хромитам и перманганатам, эти соединения — сильные окислители. Металлы легко образуют сплавы и интерметаллические соединения. Характерная черта, особенно порошкообразных металлов — способность поглощать огромное количество водорода. Поглощенный водород частично, видимо, диссоциирует на атомы и проявляет повышенную химическую активность. Это используется при проведении химических процессов. с участием. водорода. [c.373]

    Первый элемент Периодической системы (1-й период, порядковый номер 1). Не имеет полной аналогии с остальными химическими элементами и не принадлежит ни к какой группе (условно помещается в IA- и VIIA-группы). Атом водорода наименьший по размерам и самый легкий среди атомов всех элементов. Электронная формула атома Is, характерные степени окисления - -I и реже —I, первое из состояний Н считается устойчивым. Обладает значением электроотрицательности, средним между типичными металлами и неметаллами. Проявляет амфотерные свойства — металлические (основные) и неметаллические (преобладают кислотные), входит в состав катионов и анионов. [c.151]

    Значительное число химических элементов обладает амфотер-ными свойствами. Вопрос разделения амфотерных электролитов методом электродиализа с применением ионообменных мембран в литературе освещен слабо. Имеется лишь несколько американских патентов, в которых описывается отделение неамфотерных электролитов от амфотерных в статических условиях. [c.127]

    В соответствии с изменением химической природы элемента закономерно изменяются и химические свойства соединений, в частности их основно-кислотная активность. Так. в случае оксидов в ряду — ВеО — В2О3 — СО2 — N,05 по мере уменьшения степени полярности связи (уменьшения отрицательного эффективного заряда атома кислорода б) ослабляются основные и нарастают кислотные свойства Ы О — сильно основный оксид, ВеО — амфотерный, а В2О3, СО и ЫзОй — кислотные. [c.250]

    Иногда для О. элемента с низшей возможной валентностью применяют старое название — закись. Например, закись меди uaO (гемиоксид, полуокись), закись железа FeO (моноксид, одноокись) и др. По своим химическим свойствам все О. делятся на солеобразующие и несолеобразующие. Солеобразующие О. бывают основными, кислотными и амфотерными. К несолеобразующим относятся гемиоксид азота NjO, моноксид азота N0, моноксид углерода СО и некоторые др. [c.179]

    Состав простых нормальных оксидов определяется окислительным числом электроположительного элемента и выражается формулами ЭаОп (нечетное окислительное число п) или Э0 /2 (четное окислительное число). Свойства простых оксидов определяются характером связанного с кислородом элемента. Оксиды химически активных металлов характеризуются основными свойствами. По мере уменьшения активности металлов, а особенно при переходе к неметаллическим элементам свойства их оксидов непрерывно изменяются от типично основных через амфотерные к кислотным. [c.59]

    Алюминий по химическим свойствам во многом похож на бериллий. Так, гидроксиды Ве(0П)1 и Л1(0П)] амфотерны, ионы Ве и А) сильно гидратируются и образуют аналогичные по составу и сходные по свойствам комплексы. О сходстве этих элементов свидетельствует зависимость, представленная на рис. 3.10. Почти для всех указанных на рис. 3.10 веществ экспериментальные точки близки к прямой, о печаю11(ей равному (в расчете на эквивалент) химическому сродству. [c.355]

    Общая характеристика группы. У всех элементов третьей группы высшая степень окисления в соответствии с номером группы равна трем. Этому отвечают их оксиды типа КаОз. По химическому характеру только окись бора В2О3 является кислотным оксидом оксиды алюминия А Оз, индия 1П2О3 и галлия ОэгОз обладают амфотерными свойствами, а все остальные являются основными с постепенным усилением основных свойств при переходе к элементам с ббльшей атомной массой. [c.72]

    Соответственно различаются по химическому характеру и их гидроксиды. От борной кислоты Н3ВО3 через амфотерную гидроокись алюминия можно перейти к основным гидроксидам остальных элементов. [c.73]

    Многообразие валентных состояний объясняет существование большого числа химических соединений у переходных элементов по сравнению с остальными металлическими элементами периодической системы. Оксиды и гидроксиды переходных элементов, в которых они находятся в низшем валентном состоянии, проявляют обычно основные свойства (например, МпО и Мп(0Н)2), в то время как высшие оксиды и гидроксиды характеризуются амфотерными (например, ТЮг и Т1(0Н)4) или чаще кислотными (например, МпаО и НМп04)свойства-ми. Соединения переходных элементов с низшей степенью окисления могут быть восстановителями в химических реакциях. Так, например, Ре " — е в реакции [c.281]


Смотреть страницы где упоминается термин Химические элементы амфотерные: [c.73]    [c.40]    [c.156]    [c.325]    [c.39]    [c.199]    [c.110]    [c.18]    [c.180]    [c.49]   
Справочник по общей и неорганической химии (1997) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Амфотерность

Элемент химический

Элементы амфотерные



© 2024 chem21.info Реклама на сайте