Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллические плотнейшая упаковка

    В комплексе находится шесть молекул мочевины в гексагональной ячейке. Изучение чистых кристаллов мочевины показывает, что они принадлежат к тетрагональной системе и имеют плотную упаковку без каких бы то ни было каналов или свободного пространства, в котором могли бы быть заключены другие молекулы. Таким образом, в процессе комплексообразования наблюдается изменение кристаллической структуры с тетрагональной на гексагональную. [c.214]


    Структура воды. Как уже указывалось, молекулы Н2О в кристаллической решетке льда связаны друг с другом водородными связями. Кристаллическая структура льда весьма далека от плотнейшей упаковки. При плотнейшей упаковке молекул Н2О лед имел бы плотность 2,0 г/см , тогда как в действительности плотность льда равна 0,9 г/см  [c.156]

    Лед может существовать в нескольких кристаллических модификациях. Описанная здесь форма носит название лед I. При невысоких давлениях она является наиболее устойчивой. Но при высоких давлениях, начиная с 2000 атм, более устойчивыми могут быть другие кристаллические формы льда. В настоящее время известно несколько таких форм. На рис, 83 схематически представлена диаграмма состояния воды в области давлений до 13 000 атм. По крайней мере в двух формах (лед П-и лед III), как показывают результаты рентгеноструктурного анализа их, каждая из молекул воды тоже связана с четырьмя другими. Плотности всех форм льда от II до VII выше, чем льда I (и выше, чем жидкой воды), так как за счет действия повышенного давления (т. е. с затратой энергии извне) в них осуществляется искажение валентных углов и достигается более плотная упаковка молекул. Интересно отметить, что одна из форм льда (лед VII) почти в полтора раза тяжелее, чем лед I. Лед VII образуется при давлении около 21 700 атм и более высоких. При 21 680 атм он находится в, равновесии с жидкой водой при температуре -1-81,6° С (теплота плавления его в этих условиях равна 526 ккал/моль), а при давлении 32 ООО атм лед плавится лишь при +192° С. [c.250]

    Двум главным структурообразующим факторам направленной и ненаправленной составляющим связи, соединяющей структурные единицы в строении твердых веществ, отвечают два разных состояния твердого вещества, а именно плотнейшая упаковка при крайне бедном энергией кристаллическом состоянии и разуплотненная структура богатого энергией состояния, по традиции называемого аморфным, т. е. бесструктурным, хотя, как известно, аморфные вещества имеют структуру, которая, так же как и для кристаллических веществ, в конечном счете определяется теми же квантовыми законами. Заметим, что структуру аморфных веществ уже более сорока лет успешно изучают рентгено- и электронографическими, а также нейтронографическими дифракционными методами. В отличие от кристаллических веществ, для которых характерна трехмерная периодичность и симметричность строения, аморфные вещества имеют непериодическую структуру, не подчиняющуюся законам симметрии. [c.160]


    После открытия Лауэ (1912 г.) дифракции рентгеновских лучей теория кристаллической решетки, которая начала развиваться еще в ХУП в., получила полное экспериментальное подтверждение. Методом рентгеноструктурного анализа были измерены межатомные расстояния и определено положение атомов в кристаллах. При этом было установлено, что структура кристаллов является плотнейшей упаковкой соответствующих структурных единиц и определяется прежде всего размерами этих структурных единиц. Согласно правилу Гольдшмидта (1927 г.), строение кристалла определяется числом его структурных единиц (ионов), отношением их радиусов, а также их поляризационными свойствами. Усиленное изучение связи состава и свойств твердых веществ с их кристаллической структурой привело к формированию новой отрасли химии — кристаллохимии. Кристаллохимические исследования, среди которых выдающееся значение имели работы Л. Полинга, А. В. Шубникова, Н. В. Белова, А. И. Китайгородского, помогли глубже понять природу твердых веществ, раскрыть закономерности, управляющие образованием кристаллических структур, в том числе таких сложных, как структуры силикатов и алюмосиликатов. [c.166]

    Металлы имеют кристаллические структуры, в которых атомы располагаются как плотноупакованные сферы или какими-либо сходными способами. Например, кристаллическая структура меди характеризуется плотнейшей упаковкой, которая называется кубической плотнейшей упаковкой (разд. 11.4, ч. 1) каждый атом меди находится в контакте с 12 другими атомами меди. Ни у одного из металлов атомы не имеют столько валентных электронов, чтобы образовывать локализованные двухэлектронные связи с таким большим числом соседних атомов. В качестве другого примера рассмотрим магний. Он имеет только два валентных электрона, однако также окружен 12 соседними атомами магния. Если каждый атом должен обобществлять связывающие электроны со всеми соседними атомами, то эти электроны должны быть способны перемещаться из одной области связывания в другие. [c.360]

    Полимер как среда, где развивается цепной процесс окисления, неоднороден в нем есть области с рыхлой упаковкой сегментов макромолекул, где велика скорость сегментальной подвижности, выше [Оз], быстрее развивается цепной процесс окисления, и области (кристаллические) с плотной упаковкой макромолекул, низкой [Oj], низкой скоростью молекулярной и сегментальной диффузии. Скорость окисления образца равна сумме скоростей окисления составляющих его областей (зон). [c.244]

    Наибольшую трудность представляет описание диффузии в кристаллическом твердом теле. Трудно представить себе, как могут колеблющиеся атомы в условиях плотной упаковки перемещаться по решетке твердого тела. [c.267]

    Выполнение условия ДЯ < О означает и выполнение двух структурных условий. Первое — регулярность строения полимерной цепи, без чего из макромолекул невозможно построить кристаллическую решетку с трехмерной периодичностью. Второе — плотная упаковка звеньев в кристаллической решетке, которая обусловлена существованием энергетически разрешенной конформации макромолекулы с одномерной периодичностью в направлении ее оси, при которой достигается достаточно плотная упаковка звеньев в кристаллической решетке. [c.183]

    Понятие о координационном числе применяют при рассмотрении окружения атомов не только в кристаллах, но и в свободных молекулах ( газах) и в многоатомных ионах, существующих в растворах. Для больщинства металлов к. ч. равно 12, что соответствует наиболее плотной упаковке частиц в кристаллической решетке. [c.55]

    Чем симметричнее сами частицы, чем симметричнее они расположены и чем меньше связь между ними в жидком состоянии, тем больше оснований предполагать, что охлаждение жидкости приведет к ее кристаллизации. Действительно, расплавленные металлы, расположение атомов в кристаллической решетке которых близко к плотнейшей упаковке, легко кристаллизуются, а расплавленные силикаты часто переходят в стеклообразное состояние, Органические соединения, содержащие много гидроксильных групп (например, глицерин), в отличие от углеводородов, затвердевая, обычно не кристаллизуются - сказывается влияние водородных связей. [c.171]

    Лед может существовать в нескольких кристаллических модификациях. Описанная здесь форма носит название лед I. При невысоких давлениях она является наиболее устойчивой. Но при высоких давлениях, начиная с 2000 атм, более устойчивым могут быть другие кристаллические формы льда. В настоящее время известно несколько таких форм. На рис. 7 представлена в схематической форме диаграмма состояния воды в области давлений до 13 000. По крайней мере в двух формах (лед П и лед П1), как показывают результаты их рентгеноструктурного анализа, каждая из молекул воды тоже связана с четырьмя другими. Но плотности всех форм льда от II до VII выше, чем льда I (и выше, чем жидкой воды), так как за счет действия внешней силы (т. е. с затратой энергии извне) В них осуществляется искажение валентных углов и достигается более плотная упаковка молекул. Интересно отметить, что одна из форм льда (лед VII) почти [c.9]


    Данные о структуре кристаллических веществ можно получить на основании самых разнообразных исследований. К их числу можно отнести и чисто визуальное измерение внешних граней и углов в монокристаллах, и изучение их объемных характеристик, таких, например, как электропроводность или модули упругости. Однако эти характеристики не позволяют точно установить положение микрочастиц в кристаллах из-за их плотной упаковки. Поэтому при изучении структуры кристаллических веществ используются главным образом оптические методы, базирующиеся на поглощении и рассеянии различных излучений кристаллами. Поскольку длины связей в кристаллах (постоянные их решеток) порядка 0,1—0,3 нм, для анализа обычно используют коротковолновые излучения типа рентгеновского, а также нейтронные и электронные потоки. [c.91]

    Кристаллические решетки нитридов и карбидов переходных металлов представляют собой исключительно плотные упаковки из атомов металлов, в междоузлия которых внедрены меньшие по размерам атомы азота или углерода. Последние искажают кристаллическую решетку металла. Валентные электроны атомов углерода и азота переходят на вакантные -орбитали атомов металла. Образуются дополнительные [c.243]

    Высокомолекулярные соединения встречаются только в конденсированной фазе (жидкое и твердое состояние). Переход полимеров из жидкого в твердое состояние осуществляется кристаллизацией, или стеклованием, в результате чего образуются кристаллические или аморфные полимеры. Характерным состоянием полимеров является аморфное, так как процесс формирования неупорядоченной структуры кинетически более выгоден, чем процесс кристаллизации. Различают два основных типа структурных образований аморфных полимеров глобулы и пачки. Чем более упорядочена структура макромолекул, тем плотнее упаковка их в пачки. Плотно упакованные пачки представляют собой начальную форму кристаллизации полимеров. Кристаллизация полимеров представляет собой сложный многоступенчатый процесс. Из пачек в промежуточной стадии кристаллизации формируются продолговатые образования — фибриллы и радиально исходящие из [c.336]

    Наличие неподеленных пар электронов у кислорода и смещение обобществленных электронных пар от атомов водорода к атому кислорода обусловливает образование водородных связей между кислородом и водородом. Водородные связи обусловливают ассоциацию молекул воды в жидком состоянии и некоторые ее аномальные свойства, в частности, высокие температуры плавления и парообразования, высокую диэлектрическую проницаемость, максимальную плотность при 4°С, а также особую структуру льда. В кристаллах льда молекула воды образует четыре водородные связи с соседними молекулами, что приводит к возникновению тетраэдрической кристаллической структуры. Расположение молекул в таком кристалле отличается от плотной упаковки молекул, в решетке много свободных мест, поэтому лед имеет относительно невысокую плотность. [c.83]

    В порошках и компактных твердых телах, если последние не являются монокристаллами с предельно плотной упаковкой, всегда протекают процессы, ведущие к уплотнению вещества иногда они идут с исчезающе малой скоростью, однако всегда ускоряются с повышением температуры. Здесь проявляется общая тенденция к переходу от менее стабильных состояний к более стабильным, которые характеризуются минимальной поверхностью, максимальной плотностью и равновесной концентрацией дефектов в кристаллической решетке. [c.213]

    Бериллий и щелочноземельные металлы имеют серебристо-белый цвет и относятся, за исключением радия, к легким металлам. Структура кристаллических решеток металлов неодинакова Ве и Mg характеризуются гексагональной плотной упаковкой (рис. 11, а), Са [c.45]

    Окись алюминия (П1) имеет несколько кристаллических модификаций. Наиболее важна модификация а-АЬО.з — корунд, структура его может рассматриваться как гексагональная, плотнейшая упаковка ионов 0 , в которой 2/3 октаэдрических пустот заняты ионами AF+. [c.56]

    Эффекта сверхпроводимости можно было бы ожидать большой длине сопряженной цепи (в идеале бесконеч-) и кристаллической плотной упаковке К сожалению, того, ни другого пока достичь е удалось Известны аморфные полиацетилены с невысоким знаем молекулярной массы Это, напротив, типичные ди-ики [c.325]

    Здес ) /(м — константа Маделунга, зависящая от характера взаимного расположения ионов в кристаллической решетке (ее значения известны Д.ПЯ различных типов решетки так, например, для решетки Na l — гранецентрированного куба —/(м = 1,7476) г—равновесное расстояние между ионами противоположного знака в данном кристалле (обычно оно определяется по принципу плотной упаковки и отвечает сумме кристаллохимических радиусов Гольдшмидта) п — константа, характеризующая изменение сил отталкивания с расстоянием между частицами оиа лежит в пределах от 5 до 12 (для Na l п = 7,5). [c.44]

    Поскольку металлическая связь ненасыщаема и ненаправлена, мета. лы имеют координационные решетки с максимально плотной упаковкой. Как указывалось выше (см. рис. 65), для металлических простых веществ самых разнообразных по химической природе элементов наиболее типичны три типа кристаллических решеток кубическая гранецентрированная (к. ч. 12), гексагональная (к. ч. 12) и ку()ическая объемноцентрированная (к. ч. 8). Для большинства металлов характерна аллотропия. Это прежде всего связано с тем, что энергии кристаллических решеток различных металлических структур близки. Полиморфизм чаще проявляется у ii- и /-элементов (в особенности 5/), чем у S- и р-элементов. Это обусловлено энергетической близостью п — 1) d-, ns-, пр-состояний у ( -элементов и близостью 5/-, bd-, 7з-состояний у 5/-элементов. [c.233]

    Заметим, что в определении соударения имеется ряд произвольных допущений, которые касаются, в частности, сил взаимодействия частиц АиВ. Часть из этих допущений заключена в принятой нами модели строения растворов. Так, если принять квазикристаллическую модель строения жидкости, то ближайшие соседние частицы будут расположены друг от друга на расстояниях, соответствующих такой кристаллической решетке. Для гексагональной плотной упаковки сферических молекул ближайшие частицы будут расположены на расстоянии г ав ДРУГ от друга, следующие соседние частицы — па расстоянии 7 дв (8/3) 2 1,7гдв. Если принять кристаллическую модель, то вероятность существования в растворе пар А — Вс расстоянием между А и В в интервале от гдв до 1,7гдв очень мала. [c.425]

    Если предположить, что силы, приводящие к образованию такой плотной упаковки, не очень велики, то в этом случае кристаллическая решетка не слишком плотна и возможны промежуточпые расстояния между АиВ (от 7-дв до 1,7гае)- [c.425]

    Физические и химические свойства. Магии т и бериллий представляют собой металлы серебристо-белого цвета. Структура кристаллических решеток магния и бериллия характеризуется гексагональной плотной упаковкой (см. рнс. 30). Некоторые физические сво 1Ства магния и бериллия приведены в табл. 9. [c.247]

    Кристаллы аргона и других инертных газов являются молекулярными с высокими координационными числами (плотной упаковкой молекул в кристалле). Так, аргон имеет кубическую гра-иецентрированную кристаллическую реп1етку (см, рис. 50, а). [c.181]

    Молекулярные твердые соединения построены из молекул, соединенных друг с другом лишь ван-дер-ваальсовыми силами, включая в определенных случаях водородные связи, и состав этих веществ есть сумма составов всех молекул, вошедших в его структуру. Они образуют молекулярные кристаллы, структурными единицами которых служат молекулы. Молекулярные твердые соединения образуются в результате отвердевания, т.е. фазового превращения вещества, когда имеет место лишь межмолекулярное взаимодействие и не происходит разрыв существующих или образование новых химических связей. При образовании молекулярных кристаллов в условиях низких температур, исключающих межатомные взаимодействия, молекулы без сколько-нибудь существенных изменений входят в кристаллическую структуру, образуя настолько плотную упаковку, насколько позволяет конфигурация. молекул /69/. [c.107]

    Алмаз был известен в далеком прошлом, широко применяется в настоящем, велики перспективы его использования в будущем. С развитием технЕжи, когда возникла необходимость в новых видах минерального сырья, в частности для обработки камня, металлов, твердых синтетических материалов, алмаз приобрел как бы вторую жизнь. В настоящее время существование всей обрабатывающей промышленности и машиностроения (от создания мощных агрегатов до изготовлешы тончайших механизмов и приборов) практически немыслимо без применения алмазов. Сейчас алмазы очень широко используются как абразивный материал (абразивные порошки, пасты, шлифовальные круги, алмазные пилы, стеклорезы и т.д.), что основано прежде всего на их чрезвычайно высокой твердости. В последние годы все больше привлекают внимание другие исключительные свойства алмаза его, электрические свойства при использовании в качестве полупроводников, высокое светопреломление - в оптических приборах. Находит применение его практическая амагнитность. Алмаз как кристаллическое вещество благодаря плотной упаковке атомов углерода может стать накопителем и хранителем обширной информации. [c.43]

    Концентрация расслаивания Ср тем выше, чем ближе полимеры по химической природе. Если различие в химической природе велико, то расслаивание может произойти и при концентрациях менее 1%. В то же время сильное различие по химической природе, обусловленное наличием полярных функциональных групп, может, наоборот, привести к образованию нерасслаиваюшихся смесей. Близкие по природе полимеры могут иметь столь близкие физические константы, что микрорасслаивание в растворе не переходит в макрорасслаивание и можно прийти к ошибочному выводу об однофазности смеси. Это согласуется с трудностью или даже с невозможностью образования совместных кристаллов в смеси кристаллических полимеров. Предполагается, что требования к максимально плотной упаковке особенно высоки для полимеров, склонных к образованию надмолекулярных структур в аморфном состоянии и в растворах. Поэтому при оценке совместимости и объяснении механизма расслаивания полимерных смесей,помимо энергетического фактора,особое значение приобретает разнозвенность макромолекул ВМС (структурный фактор). Каждая макромо- [c.76]

    При образовании молекулярных кристаллов в условиях низких температур, исключающих межатомные взаимодействия, процесс отвердевания наблюдается в чистом виде. Молекулы без сколько-нибудь существенных изменений входят в кристаллическую структуру, связанные между собой только слабыми ненаправленными межмолекулярными связями. Именно поэтому молекулярные кристаллы имеют настолько плотную упаковку, насколько позволяет конфигурация молекул. Заметим, что с химической точки зрения и этот, казалось бы, чисто физический процесс цред-ставляет собой процесс синтеза, так как его продуктом является твердое молекулярное соединение — новое вещество, образующееся из молекул исходных веществ. Чисто межмолекулярные взаимодействия представляет собой кристаллизация неона, аргона, криптона, ксенона и радона. Хотя их кристаллы состоят из атомов, тем не менее это настоящие молекулярные кристаллы образующие их молекулы одноатомны. Понятно, что между такими молекулами не может быть никакого другого взаимодействия, кроме ван-дер-ваальсовского.  [c.21]

    Поскольку металлическая связь ненасыщаема и ненаправлена, металлы имеют координационные решетки с максимально плотной упаковкой. Как указывалось выше (стр. 135), для металлических простых веществ самых разнообразных по химической природе элементов наиболее типичны три типа кристаллических решеток кубическая гранецентрированная (к. ч. 12), гексагональная (к. ч. 12) и кубическая объемноцентрированная (к. ч. 8). [c.256]

    Радиусы частиц, из которых состоит кристалл, равны или очень близки по величине. Этому условию отвечают два типа кристаллических решеток гексагональная (рис. 9, а) и гранецентриро-ванная кубическая (рис. 9, б). В таких решетках степень заполнения объема кристалла частицами составляет 74%- Это максимально плотная упаковка частиц одинакового или близких по величине радиусов. Подобный тип решеток свойствен большинству металлов, [c.31]

    Если считать, что криолит Ыаз81Рй имеет кристаллическую структуру, основой которой является плотнейшая упаковка фторид-ионов, то в полости каких типов могут внедриться ионы А1 и Ыа в такой структур (ионный радиус Р 1,33 А, Ка 0,98 А, А1 0,45 А)  [c.369]

    Возможность образования и устойчивость той или иной кристаллической структуры зависят от температурных условий (и давления). Чем ниже температура, тем более вероятны плотная упаковка ионов и высокое координационное число, и. наобо()от, при высокой температуре предпочтительнее им кое координационное число. Это в значительной ме )е влияеп нп направление превращения и его механизм. Рассмотрим слсд ю щий п )имер. [c.228]

    Так, стереорегулярная цепь изотактического полипропилена может существовать в аксиально периодической спиральной конформации (рис. VI. 19). Соответственно изотактический полипропилен легко кристаллизуется так, что оси молекулярных спиралей располагаются в элементарной ячейке в направлении ее оси с. В отличие от этого атактический (нестерорегулярный) полипропилен в кристаллическом состоянии не существует. Это же относится к изотак-тическому и атактическому полистиролам. Однако изотактический поли-п-иодстирол тем не менее кристаллизоваться не может, так как объемистые заместители препятствуют достаточно плотной упаковке регулярных спиралей. В последнем случае при соблюдении первого структурного условия не соблюдается второе. [c.183]

    Строение жидкой воды. Как уже указывалось (см. стр. 260), молекулы Н2О в кристаллической решетке льда связаны друг с другом водородными связями. Кристаллическая структура льда весьма далека от плотнейше упаковки. Если произвести расчет, обратный описанному на стр. 10, и исходя из определенного рентгенографически радиуса молекулы Н2О в структуре льда (1,38 А) подсчитать плотность воды, соответствующую плотнейшей упаковке, то мы получим значение 2,0. Эта величина более чем в два раза превышает плотность льда, которая равна 0,9. [c.279]

    Переходы ортосиликата кальция из одной модификации в другую сводятся к изменению положения ионов кальция в кристаллической решетке. В а- и -формах этого силиката ионы кальция являются активными координационными центрами здесь имеется плотнейшая упаковка структурных элементов решетки. В отличие от этпгп в— a2Si04 наблюдается низкая плотность упаковки. В связи с этим плотность -формы составляет 3,28 г/см , а 7-формы — только 2,97 г/см переход -формы в 7-форму сопровождается увеличением объема почти на 10%. Если этот процесс начался, то он быстро распространяется на всю массу значительное увеличение объема и выделение теплоты вызывает рассыпание кристаллов в пыль. [c.107]

    Кристаллическая структура ковалентных твердых тел полностью определяется природой связей. Координационное число многих известных ковалентных кристаллов равно четырем. Это значит, что каждый атом в кристалле образует четыре направленные ксваленткые связи. Направленность связи иск. ючает плотнейшую упаковку кристалла. Примером кристаллической решетки с ковалентными связями служит решетка алмаза (рис. 33). [c.77]

    Аллотропия может быть обусловлена или различным числом атомов данного элемента в молекуле этого вещества, например кислорода О2 и озона Оз, или различной кристаллической структурой образующихся модификаций, например алмаза и графита. Способность веществ при определенных температурах (давлениях) образовывать в твердом состоянии различные типы кристаллических структур называют полиморфизмом. К образованию полиморфных модификаций способны не только простые вещества, но и соединения например, А12О3 имеет девять модификаций. Аллотропные и полиморфные модификации обозначают греческими буквами а, р, у и т. д., где а — самая низкотемпературная модификация. Низкотемпературные модификации обычно имеют наиболее плотную упаковку атомов в кристаллах. При нагревании осуществляется переход их. к более рыхлой структуре, при этом возрастает неупорядоченность в кристалле (А5> 0) и появляются новые кристаллические структуры.  [c.224]

    Заметное отклонение структуры молекулярного кристалла от плотнейшей упаковки происходит при наличии между молекулами водородной связи, например у льда. Искажение валентных углов здесь требует значительных затрат энергии. Этим объясняется рыхлая структура льда. Энергия кристаллической решетки молекулярного кристалла выражается тепловым эффектом его сублимации. Эта величина для разных веществ колеблется от долей единицы до нескольких десятков кДж/моль и более, что значителы о ниже, чем энергии решетки других типов кристаллов. [c.137]

    Распределение форм кристаллических решеток по сингониям и классам неравномерно. Как правило, чем проще химическая формула вещества, тем выше симметрия его кристалла. Так, почти все металлы имеют кубическую или гексагональную структуру. Аналогичное положение характерно для многих простых химических соединений (галогениды щелочных и щелочноземельных металлов). Усложнение химической формулы ведет к понижению симметрии его кристалла (например, силикаты). Причин такого поведения много, но главнейшей из них является плотность упаковки, т. е. число частиц в узлах кристаллической решетки. Чем плотность упаковки больше, тем более устойчива и вероятна структура кристалла. Свободное пространство здесь оказывается, наименьшим. Указанный принцип наиболее плотной упаковки, однако, применим не ко всем кристаллам. Его нельня использовать, например, для льда, где большое влияние на формирование кристалла оказывает образование направленных водородных связей. [c.142]

    В качестве примера кристаллических веществ, внутренняя структура которых отвечает ионной решетке, рассмотрим хлористый натрий. На рисунке V-8 схематически представлено строение элементарной ячейки этого вещества. Принимая сферическую форму ионов с определенными эффективными радиусами, внутреннюю структуру кристалла Na l следует представлять себе как плотную упаковку шаров различного радиуса. Так, эффективный радиус катиона натрия равен 0,98 A, а аниона хлора— 1,81 А (радиус катиона, как правило, меньше радиуса аниона). На рисунке V-9 представлена структура Na l в виде модели, в которой соблюдены соотношения размеров ионов при их плотной упаковке. [c.121]


Смотреть страницы где упоминается термин Кристаллические плотнейшая упаковка: [c.41]    [c.261]    [c.102]    [c.50]    [c.239]    [c.343]    [c.145]    [c.38]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.252 , c.253 , c.283 , c.286 , c.291 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллические структуры гексагональная плотнейшая упаковка

Упаковки плотные плотнейшие



© 2025 chem21.info Реклама на сайте