Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вещества характер химический

    Атомные и ионные радиусы. Радиусы атомов и ионов являются условными величинами. Их обычно вычисляют из межатомных расстояний, которые зависят не только от природы атомов, но также и от характера химической связи между ними и от агрегатного состояния вещества. [c.46]

    Физико-химический анализ основан на изучении зависимости между химическим составом и какими-либо физическими свойствами системы (плотность, вязкость, растворимость, температура плавления, температура кипения и др.) с применением геометрического метода изображения полученных результатов. Найденные опытным путем данные для нескольких состоянии системы наносятся в виде точек на диаграмму состав—свойство , на оси абсцисс которой откладывается состав системы, на оси ординат — свойство. Сплошные линии, проведенные через эти точки, отображают зависимость свойства от состава системы н позволяют устанавливать соотношение любого произвольно взятого состава системы с исследуемым свойством. Плавный ход сплошных линий соответствует постепенному увеличению или уменьшению исследуемого фактора (состава, температуры, давления и т. п.), не влекущему за собой изменения качественного состава системы. Резкие перегибы и пересечения линий указывают на превращения и химические взаимодействия веществ. Анализ линий и геометрических фигур на диаграмме состав—свойство позволяет судить о характере химических процессов, протекающих в системе, а также устанавливать состав жидкой и твердой фаз, не прибегая к разделению системы на составные части. [c.272]


    Химические свойства простых веществ. В химических реакциях металлы обычно выступают как восстановители. Неметаллы, кроме фтора, могут проявлять как окислительные, так и восстановительные свойства. При этом характер изменения восстановительной и окислительной активности простых веществ в группах и подгруппах существенно зависит от природы партнера по реакции и условий осуществления реакции. Обычно в главных подгруппах проявляется общая тенденция с увеличением порядкового номера элемента окислительные свойства неметаллов ослабевают, а восстановительные свойства металлов усиливаются. Об этом, в частности, свидетельствует характер изменения стандартных изобарных потенциалов образования однотипных соединений. Например, в реакции окисления хлором металлов главной подгруппы П группы [c.260]

    Исследованиями ученых многих стран установлено, что к соединениям переменного состава относятся не только оксиды, но н субоксиды, халькогениды, силициды, бориды, фосфиды, нитриды, многие другие еорганические вещества, а также органические высокомолекулярные соединения. Во всех случаях, когда сложное вещество имеет молекулярную структуру, оно представляет собой соединение постоянного состава с целочисленными стехиометриче-скими индексами. Некоторые ионные кристаллы и даже атомные кристаллы и металлы могут также подчиняться законам стехиометрии. Но в случае немолекулярных кристаллов, как отмечает Б. Ф. Ормонт, уже не молекула, а фаза т. е. коллектив из Л/о (числа Авогадро) атомов, определяет свойства кристаллической решетки . Он предлагает для подобных веществ расширить формулировку закона постоянства состава Если... в твердом агрегатном состоянии соединение не имеет молекулярной структуры, то в зависимости от строения атомов и вытекающего отсюда строения фазы и характера химической связи в ней состав соединения и его свойства могут сильно зависеть от путей синтеза. Даже при одном и том же составе свойства могут сильно зависеть от условий образования . Б. Ф. Ормонт подчеркнул необходимость исследования зависимости условия образования—состав — строение — свойства,— направленного. на установление связи между условиями образования, химическим и фазовым составом системы, химическим составом и строением отдельных фаз и их свойствами. Нетрудно заметить, что добавление к обычной формуле, закона постоянства состава слов состав срединения зависит от условий его образования ,— лишает закон постоянства состава его смысла. В то же время указание на важность изучения в связи с проблемой стехиометрии не только состава, но и строения твердых веществ представляется очень существенным. [c.165]


    У взятых веществ характер химической связи с изменением валентности, конечно, существенно меняется. [c.249]

    По способности проводить электрический ток вещества делятся на проводники, полупроводники и изоляторы (диэлектрики). Такое деление довольно условно. Нет веществ, абсолютно не способных проводить электрический ток, и иногда трудно отнести вещество к тому или иному классу. Электропроводимость зависит от температуры, давления, чистоты вещества (содержание примесей), кристаллической структуры (ср., например, алмаз и графит, белое и серое олово), характера химических связей и других факторов. [c.179]

    В книге изложены основы неорганической химии в соответствии с программой для средних специальных учебных заведений пищевого профиля. Материал освещается в свете современных представлений о строении атомов, молекул и веществ, характере химических связей, валентности и степени окисления. [c.2]

    ЭПР применяется для исследования парамагнитных веществ, т. е. имеющих непарные электроны. Этот метод широко используется для обнаружения и определения концентрации свободных радикалов и ионов в растворах, для установления характера химической связи в комплексных соединениях и т. д. [c.148]

    Так как энергия частиц, применяемых в радиационной химии, во много раз превосходит энергию квантовых уровней валентных электронов веществ — участников химической реакции, то, в отличие от фотохимических процессов, первичный акт взаимодействия излучений большой энергии с веществом не носит избирательного характера. Этот первичный акт взаимодействия, излучений большой энергии с веществом приводит обычно к ионизации вещества и возникновению свободных радикалов. Поглощение ионизирующих излучений зависит от порядкового номера поглощающего элемента. Первичные продукты взаимодействия образуются вдоль путей ионизирующих частиц, причем ионизация возрастает к концу пути частиц и зависит от их природы и массы. В фотохимических реакциях вторичные процессы являются в большинстве случаев чисто химическими (ре- акциями радикалов). В отличие от фотохимических реакций, вещества, возникающие под действием радиации большой энергии, подвержены дальнейшему воздействию излучений. Вторич- [c.258]

    Ячеечная модель с застойными зонами. Структурная схема ячеечной модели с застойными зонами при неравных скоростях обмена в противоположных направлениях представлена в табл. 4.2. Объем i-й ячейки представляется в виде суммы двух объемов объема проточной зоны V . и объема застойной зоны Xf — концентрация в проточной части ячейки — концентрация в застойной части i-й ячейки. Между зонами происходит обмен веществом, характер которого может быть различным. Наиболее вероятными видами обмена могут быть конвективный, диффузионный, а также виды обмена типа адсорбции, химической реакции и т. п. Исходя из принципа аддитивности, общий обменный поток за счет действия отдельных видов обмена выражается соотношением q=kiX—к у, где к , к — суммарные коэффициенты обмена в прямом и обратном направлении. Уравнения материального баланса индикатора для -й ячейки имеют вид [16] [c.231]

    Объектами исследования в термодинамике являются только макроскопические системы, т. е. системы, состоящие из очень большого количества частиц. При термодинамических исследованиях любого процесса не рассматривается молекулярная структура вещества, характер сил взаимодействия между молекулами, механизм процесса, ничего не говорится и о скорости процесса. Та часть термодинамики, которая имеет дело с применением указанных трех законов к химическим процессам и фазовым переходам, называется химической термодинамикой. Химическая термодинамика разрабатывает наиболее рациональные методы расчета тепловых балансов при протекании химических и физико-химических процессов раскрывает закономерности, наблюдаемые при равновесии определяет наиболее благоприятные условия для осуществления термодинамически возможного процесса выясняет условия, при которых можно свести к минимуму все побочные процессы определяет термодинамическую устойчивость индивидуальных веществ. [c.181]

    Классификация каталитических реакции и катализаторов. По характеру химического взаимодействия катализатора с реагирующими веществами и промежуточных продуктов различают кислотно-основные и окислительно-восстановительные каталитические [c.134]

    В настоящее время довольно часто прибегают к изучению инфракрасных спектров сложных смесей высокомолекулярных соединений. Такой спектральный анализ позволяет делать вывод о присутствии в этих смесях соединений, содержащих группы С=0, СНд, ОН, ЗН, С=С ароматическую, С—О—С, различные типы олефиновых связей С = С [106—119]. Часто спектры используют для суждения о характере химических изменений вещества, например смазочного масла, во время эксплуатации [132, 133]. Во многих случаях авторам удается сделать количественную оценку содержания тех или иных групп атомов в молекуле. [c.238]


    Требования к качеству ароматических углеводородов за последние десятилетия претерпели изменения, характер которых связан с неуклонным ростом использования этих веществ как химического сырья. В довоенный период, когда ароматические углеводороды потреблялись преимущественно в качестве растворителей или компонентов моторных топлив, содержание примесей в них регламентировалось не очень жестко. Внимание уделялось пределам перегонки топлив, а также примесям, влияющим на коррозию двигателя и системы топливоподачи (соединения серы) и на хранение топлив (олефины и другие смолообразующие вещества). [c.115]

    Электролиз расплавленных солей проводится при температурах, незначительно превышающих температуру их кристаллизации. При таких температурах строение расплавов сохраняет некоторое сходство со строением твердых веществ. Такие свойства веществ, как объем и теплоемкость, упорядоченность кристаллической структуры и др., при плавлении изменяются несущественно. Это объясняется тем, что характер химической связи кристаллических веществ в твердом состоянии-—ионная, ковалентная, металлическая, — сохраняется и для веществ в расплавленном виде. Однако различие существует. При плавлении изменяется характер движения частиц. При повышении температуры степень неупорядоченности, имеющаяся в твердых кристаллах, возрастает и соответственно увеличивается электропроводность. Одновременно нарушается порядок расположения частиц в твердом веществе, т. е. уменьшается дальний порядок. При достижении температуры плавления дальний порядок полностью исчезает и вещество переходит в жидкость, но ближайшее окружение иона в жидком виде — так называемый ближний порядок — остается таким же, как и в твердом теле.. [c.465]

    Энтропия плавления — одна из важнейших термодинамических характеристик процесса перехода вещества из твердого состояния в жидкое. Она является мерой разупорядочения кристалла, сопровождающего плавление, не только в смысле изменения расположения атомов и конфигурации колебательного спектра, но также в смысле изменения характера химической связи, если процесс [c.125]

    По современным представлениям, в стеклообразующих веществах большое значение имеет характер химических связей. [c.193]

    В табл. 21.1 перечислены некоторые отличительные свойства металлов и неметаллов. Металлы в конденсированном состоянии обладают характерным металлическим блеском. Ярко выраженные металлические элементы обладают хорошей электро- и теплопроводностью, а также ковкостью и пластичностью. В отличие от металлов неметаллические элементы не имеют блестящей поверхности и, как правило, являются плохими проводниками тепла и электричества. Семь неметаллических элементов существуют в виде двухатомных молекул. В это число входят пять газов (водород, азот, кислород, фтор и хлор), одна жидкость (бром) и одно летучее твердое вещество (иод). Остальные неметаллы при нормальных условиях существуют в кристаллической форме и могут быть твердыми, как, например, алмаз, или мягкими, как сера. Такое разнообразие свойств объясняется характером химической связи, присущим каждому элементу, как это изложено в разд. 8.7, ч. 1. [c.282]

    Обращает на себя внимание также связь между 0с и особенностями характера химической связи. Так, для кристаллов веществ, отличающихся наличием преимущественно слабых связей поляризационного типа, характерны соответственно и минимальные величины сил сцепления, на что указывают наименьшие значения 0о. Относительно низкие значения сил сцепления характерны также для кристаллов, образованных щелочными металлами. Мак-82 [c.82]

    Взаимное влияние в молекулах органических веществ проявляют прежде всего атомы, непосредственно связанные друг с другом. В этом случае оно определяется характером химической связи между ними, степенью различия в их относительной электроотрицательности и, следовательно, степенью полярности связи. [c.558]

    Характер химических превращений и свойства веществ зависят от строения реагирующих молекул и особенно от размеров и расположения входящих в них атомов, межъядерного расстояния и энергии химических связей, зарядов атомов и атомных группировок, моментов инерции молекул. Не всегда подобные характеристики могут быть рассчитаны теоретически. Очень часто привлекаются опытные данные, получаемые путем исследования электрических, магнитных, оптических и других свойств веществ. Знание экспериментально получаемых молекулярных характеристик важно для проверки гипотез о механизме химических процессов. Кратко остановимся лишь на принципах наиболее важных методов экспериментального исследования строения молекул.  [c.49]

    Из приведенных примеров следует, что исследование изомерных сдвигов в экспериментах по ядерному гамма-резонансу дает важную информацию о характере химических связей атомов в кристаллической решетке, что является необходимым этапом при проведении структурных исследований твердого тела и создания веществ с заданными физическими свойствами. [c.205]

    Во всех рассмотренных случаях диаграммы плавкости строятся по кривым охлаждения. Их вид для чистых веществ и химических соединений совпадает с линией ] нз рис. 76 — варьируется лишь высота изотермического пояса (определяемая тугоплавкостью вещества), его протяженность (определенная природой и количеством вещества), а также наклон ее криволинейных участков (производная й11(1т зависит от перепада температур на границе вещество — внешняя среда ). Характер же кривых охлаждения смесей может несколько отличаться от кривой 2 на рис. 76. [c.262]

    Из изложенного следует, что определение дипольного момента позволяет сделать заключения о характере химической связи (ионная, полярная или ковалентная) и о геометрической структуре молекулы. Так, для определения строения вещества вычисляют (по правилу сложения векторов) для различных моделей. Правильной [c.139]

    Соединения со степенью окисления хлора —1. Характер химической связи, а следовательно, и свойства хлоридов, как и фторидов, закономерно изменяются по группам и периодам элеменюв (см. рис. КЮ). Так, в ряду хлоридов элементов данного периода тип химической связи изменяется от преимущественно ионной в хлоридах типичные металлов до ковалентной в хлоридах неметаллов. Понные хлориды -- твердые кристаллические вещества с высокими температурами плгвления, ковалентные хлориды — газы, жидкости или же легкоплавкие твердые вещества. Промежуточное положение занимают ионно-ковалентные хлориды. [c.287]

    Поверхностно-активные вещества (ПАВ)— химические сое-дписния, сиособные адсорбироваться на поверхности раздела фаз жидкость — твердое тело , жидкость — газ , жидкость — жидкость и т. д. и существенно изменять физико-химические свойства системы, в первую очередь поверхностное (межфазное) натяжение. Такое явление определяется ассиметричным, ди-фпльным характером молекул поверхностно-актпвного вещества, состоящих из полярной (гидрофильной) и неполярной (гидрофобной) групп. [c.189]

    С той или иной степень полноты эти разделы представлены и в предлагаемом сборнике. В него включены наряду с оригинальными сообщениями также работы обзорного и методологического характера. Основное внимание уделено обратныл задачам, и это закономерно, так как проблема установления модели изучаемого объекта (вещество, физико-химическая система, процесс) и определения численных значений констант, характеризующих эту модель, принадлежит к числу центральных проблем физической химии. Характерная особенность большинства представленных работ, посвященных этой проблеме, состоит в творческом примененпи пх авторами теории обработки результатов наблюдений. [c.4]

    Выше (в 12) была рассмотрена зависимость физических свойств кристаллов от вида связи между частицами, находяшими-ся в узлах кристаллической решетки. Следует отметить, что свойства веществ в жидком и газовом состояниях также зависят от характера химической связи в молекулах этих веществ и от массы и ра меров самих молекул. Так, например, вещества ионной природы легче сжижаются и криста.тлпзуются по сравнению с веществами ковалентной природы (при близких массах и размерах молекул тех и других веществ ). С увеличением массы и размеров молекул вещества легче переходят из газового состояние в конденсированное. [c.75]

    Как указано выше, титан способен интенсивно реагировать с азотом при высоких температурах с образованием ряда тверлых растворов, а также нитридов, из которых преимущественную роль играет нитрид T N. Нитрид титана — кристаллическое, очень твердое (по твердости приближается к алмазу) металлоподобное вещество с температурой плавления 2930°С. Этот нитрид проводит электрический ток, причем электрическая проводимость его уменьшается с повышением температуры, что указывает па его металлический характер. Химически нитрид титана д0В0Л1зН0 инертен. С элементарным титаном образует фазы переменного состава, в основном состоящие из TiзN (субнитрид) и ограниченных твердых растворов. [c.270]

    Прошедшее с тех пор время внесло, конечно, весьма существенные изменения в общую картину состояния проблемы. Сильно увеличилось число исследований в области высокомолекулярных соединений нефти и расширилась их география. Значительно расширился набор экспериментальных методов разделения этих веществ на основные компоненты и анализа их элементного состава и химического строения. Унифицированы и стандартизованы методики, аппаратура и материалы, применяемые при исследовании высокомолекулярных компонентов нефти, что делает результаты более надежными, воспроизводимыми и сопоставимыми. Накоплен большой экспериментальный аналитический материал по свойствам и элементному составу неуглеводородных -Компонентов и высокомолекулярных углеводородов нефти, что позволяет сделать некоторые обобщения по элементному составу этих составляющих компонентов нефти. К сожалению, имеются серьезные расхождения по содержанию в неуглеводородных компонентах нефти такого важного элемента, как кислород, который обычно определяют по разности. Противоречия имеются и в данных по содержанию металлов (вероятно, из-за недостаточной унификации методов их определения). По-прежнему объектами исследования чаще всего служат высокомолекулярные соединения тяжелых нефтяных остатков, т. е. продукты, подвергавшиеся длительному высокотемпературному воздействию в процессах переработки и, следовательно, претерпевшие более или менее глубокие химические изменения. Особенно сильным изменениям подвергается неуглеводородная, т. е. смолисто-асфальтеновая, часть. Соединения же эти в неизменном состоянии, выделяемые из сырых нефтей и природных асфальтов в условиях, исключающих их химические изменения, изучены значительно слабее. Экспериментальных данных, позволяющих надежно и с достаточной полнотой оценить характер химических превращений высокомолекулярных компонентов нефтей в процессах высокотем- [c.44]

    Ошибки метода связаны со свойствами исследуемых веществ или полученньк веществ и реактивов, с характером химического взаимодействия мел<ду ними. В ка естве простейшего примера систематической ошибки, обусловленной особенностью метода [c.479]

    Значения квадрупольных моментов ядер обычно известны, и экспериментальные исследования спектров ЯКР проводятся для получения частот переходов, констант квадрупольного взаимодействия, а значит, е ипараметров асимметрии градиента электрического поля Т1 (см. ниже), т. е. структурных данных, информации о распределении зарядов и характере химических связей. Например, чем больше ионный характер связи с данным атомом, тем меньше величина градиента поля и e qQ. Обратно, чем более ковалентной является химическая связь, тем выше соответствующая константа квадрупольного взаимодействия. Данные ЯКР предоставляют возможность экспериментальной проверки результатов квантово-механических расчетов и приближенного рассмотрения ряда проблем, связанных с внутри- и межмолекулярными взаимодействиями. Метод спектроскопии ЯКР важен как аналитический при работе с твердыми веществами, для которых не представляет трудности выращивание больших монокристаллов. [c.91]

    Продукты реакции, выделенные из реакционной массы, обычно содержат примеси и называются сырыми продуктами. В качестве примесей в них могут присутствовать растворители, исходные вещества, побочные продукты, возникающие в ходе синтеза. Сырые продукты подвергают очистке для получения химически чистых веществ. Понятие химически чистое вещество имее относительный характер, поскольку в зависимости от его назначения требования к содержанию в нем индивидуального основного соединения могут быть различными. При проведении органических синтезов часто быва [c.21]

    Радиационная химия изучает хи.мнческие превращения, происходящие при воздействии ионизирующих излучений. Действие всех видов радиационного излучения п конечно.м счете сводится к взаимодействию заряженных частиц с электронами вещества, поэтому химический эффект действия различных излучений в значительной мере одинаков. Наиболее существенное отличие радиационно-химических реакций от фотохимических связано с неизбирагельным характером поглощения ионизирующего излучения. В то время как свет поглощается, если его частота соответствует частоте поглощения молекулы, энергия радиации поглощается всеми молекулами, вызывая акты ионизации и переводя молекулы в возбужденное состояние. Сохраняя все преимущества фотохимического инициировании (слабая температурная зависимость, отсутствие загрязнений в реакционной среде и др.), радиационное инициирование не накладывает каких-либо особых требований на реакционную среду. Эта среда может быть многокомпонентной, непрозрачной, находиться в разных агрегатных состояниях, кроме того, конструкция реактора может быть произвольной. [c.261]


Смотреть страницы где упоминается термин Вещества характер химический: [c.33]    [c.297]    [c.57]    [c.138]    [c.112]    [c.368]    [c.125]    [c.207]    [c.7]   
Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.186 , c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Химический ое не ная химическая вещества



© 2024 chem21.info Реклама на сайте