Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектральный анализ аппаратура

    Важным аспектом коррозии топливной аппаратуры и резервуаров является присутствие металлоорганических соединений в зольных примесях топлива и его исходных компонентах, которые были определены экспериментально методом эмиссионного спектрального анализа [76] (табл.2.33). [c.93]

    Для получения больших количеств очищенной ртути можно использовать аппаратуру для двукратной дистилляции ртути (рис. 185). После испарения ртути на первой ступени образуется конденсат, поступающий по трубчатой перемычке на вторую сту--пень, где он снова испаряется. Полученный дистиллят через запорную трубу, работающую на барометрическом нринцине, стекает в приемник. С использованием электронагревателей мощностью 300 Вт при остаточном давлении до 1 мм рт. ст., можно получать на каждой ступени около 2 кг/ч дистиллята ртути. По данным спектрального анализа перегнанная ртуть имеет очень высокую степень чистоты. Прибор снабжен с( рическими шли- [c.261]


    По технике эксперимента и аппаратуре к методам эмиссионного спектрального анализа близка атомно-абсорбционная спектрофотометрия, однако физическим явлением, лежащим в ее основе, является не излучение, а поглощение резонансного электромагнитного излучения в видимом или ультрафиолетовом диапазоне атомами элементов, находящимися в основном (невозбужденном) состоянии. [c.8]

    Метод основан на визуальном изучении спектра анализируемого вещества, наблюдаемого через окуляр спектрального прибора (наиболее распространены стилоскопы и стилометры). Идентифицируя линии в спектре, проводят качественный анализ, а оценивая их относительные интенсивности, — полуколичествен-ный и количественный анализ. Визуальный спектральный анализ отличается простотой техники эксперимента, экспрессностью и наглядностью, а также невысокой стоимостью аппаратуры. К недостаткам визуального метода следует отнести субъективный характер оценки спектра, высокие пределы обнаружения элементов, за исключением щелочных и щелочноземельных металлов, и низкую воспроизводимость определений. [c.12]

    По описываемой ниже методике для спектрального анализа растворов применяется стандартная аппаратура — стилометр СТ-7, и в качестве источника света — дуга переменного тока силой 2—3 ампера, питаемая генератором ДГ-2. На концы спектрально чистых угольных электродов диаметром 6 мм, расположенных горизонтально, наносят 1—2 капли исследуемого раствора, после чего зажигается дуга и производится визуальное наблюдение спектра. Исследуемый раствор, испаряясь, поступает в пространство между электродами, где под влиянием высокой температуры происходит возбуждение свечения атомов исследуемого вещества. [c.182]

    АППАРАТУРА ДЛЯ КАЧЕСТВЕННОГО СПЕКТРАЛЬНОГО АНАЛИЗА РАСТВОРОВ [c.183]

    Следует отметить, что широта и объем практических применений молекулярного спектрального анализа, особенно в последнее время, быстро и непрерывно растут. Это связано прежде всего с разработкой и выпуском спектрально-аналитической аппаратуры для этого метода. [c.10]

    По своему существу спектральный анализ является приборным методом. При использовании современной аппаратуры число операций, требующих вмешательства спектроскописта, невелико, и они также могут быть автоматизированы. Таким образом, спектральный анализ позволяет подойти к полной автоматизации определения химического состава вещества. Такие методы разрабатываются в настоящее время. Они внесут важный вклад в большую программу автоматизации технологических процессов, которая осуществляется в нашей стране. [c.12]


    После введения относительной интенсивности началось бурное развитие методов количественного спектрального анализа. Появился целый комплекс приборов, специально предназначенных для количественного спектрального анализа. Разрабатываются все новые типы аппаратуры и методы регистрации спектра, появляются спектральные лаборатории сначала в машиностроительной, металлургической, а затем и во многих других отраслях промышленности. С каждым годом увеличивается скорость и точность анализа и расширяется круг анализируемых объектов. Спектральный анализ становится одним из важнейших приборных методов определения атомного химического состава вещества. [c.224]

    Применение атомно-абсорбционного метода спектрального анализа в наиболее крупных лабораториях явилось прогрессивным этапом в исследовании кремния. Хотя для приобретения аппаратуры требуются значительные капиталовложения, это окупается возможностью определения большого числа элементов и экспрессностью метода за несколько часов можно выполнить анализ множества проб, приготовленных в виде растворов различных веществ. Как правило, фирмы, выпускающие приборы, могут рекомендовать соответствующие методики для приготовления анализируемых растворов. [c.134]

    Справочные данные по аппаратуре для атомно-эмиссионного спектрального анализа [c.775]

    Рассмотренное явление позволяет регистрировать изменение характеристик ОК, влияющих на условия существования волн Лэмба (изменение толщины, упругих свойств, наличия дефектов и т.п.), по изменению положения минимума интенсивности в отраженной волне. Для этого небольшой приемный преобразователь помещают в зону минимума отраженного от ОК сигнала. При этом любое изменение параметров ОК, влияющих на распространение волн Лэмба, приводит к увеличению амплитуды принятого отраженного импульса. Такой вариант метода не требует применения спектрального анализа, что упрощает аппаратуру. [c.495]

    Виброизмерительная аппаратура предназначается для измерения приведенных ранее параметров. К этой аппаратуре относятся также устройства для балансировки, спектрального анализа вибрации и для измерения энергетических характеристик процесса, связанных со случайными вибрациями и шумом. [c.606]

    В связи с продолжающимся загрязнением поверхностных и подземных вод различными вредными веществами и пагубным их действием на гидробионтов (Веселов, Гусев, Строганов, 1967) перед токсикологией возникает много трудных и сложных проблем. Для их успешного решения нужны. хорошо подготовленные кадры специалистов, владеющих тонкими и точными методами исследований и современной аппаратурой. Нет сомнения в том, что в области водной токсикологии метод эмиссионного спектрального анализа, наряду с другими точными методами, будет все более широко и успешно применяться в дальнейших разнообразных исследованиях. [c.82]

    Ниже обсуждаются современные приемы повышения чувствительности, точности и экспрессности фотоэлектрических методов спектрального анализа и достигнутые с помощью этих приемов результаты. Кроме того, кратко рассматриваются преимущества аппаратуры с электронно-счетными устройствами на выходе. [c.20]

    Весьма перспективным является сочетание ИКС с хроматографией, с помощью которой можно сравнительно легко и точно произвести предварительное разделение компонент смеси. Значительные трудности при прецизионных анализах представляет также учет искажений спектров, связанных с влиянием аппаратуры. Несмотря на подобные ограничения, молекулярный спектральный анализ по ИКС с большим успехом применяется в аналитической химии. Достаточно полный обзор различных методов анализа можно найти в монографии Кесслера [3]. [c.170]

    Ввиду этой чисто практической направленности теоретические основы метода, а также описание принципов измерения и аппаратуры даны намеренно кратко. Для введения в спектральный анализ мы попытались популярно изложить квантовомеханические принципы точных расчетов. [c.6]

    Выбор пути анализа в каждом конкретном случае определяют в зависимости от поставленной задачи, наличия соответствующей аппаратуры и квалификации аналитиков. Так, для контроля качества конечных композиций и составляющих классов ПАВ можно использовать простые и быстрые методы анализа по одному или нескольким физико-химическим показателям. Эти методы могут быть связан-ы с необходимостью упрощенного предварительного препаративного разделения, например методом тонкослойной хроматографии. Более сложны стандартные арбитражные методы и методы определения содержания одного из присутствующих в композиции классов ПАВ, основанные на. предварительном упрощенном разделении с последующим спектральным анализом. Наиболее трудоемки, длительны, требующие большого опыта и высокой квалификации (в -некоторых случаях исследователей-аналитиков различных специальностей) методы углубленного количественного анализа образцов неизвестного состава. [c.287]

    Для спектрального анализа необходима следующая аппаратура генераторы для возбуждения электрических разрядов (искры, дуги и др.), горелки, подключаемые к источнику горючей смеси, штативы с держателями для крепления электродов), спектральные приборы с визуальной, фотографической или фотоэлектрической регистрацией и аппаратура для исследования спектрограмм. [c.175]


    Какой аппаратурой пользуются для эмиссионного спектрального анализа  [c.294]

    В настоящее время уделяется большое внимание развитию спектрального приборостроения и методам спектроскопических исследований. Постоянно отмечается настоятельная необходимость дальнейших научных исследований по теории работы спектральной аппаратуры, по созданию новых схем приборов на базе теории информации, по дальнейшему усовершенствованию методик спектрального анализа. [c.6]

    Разработка спектральной аппаратуры для промышленного анализа шла сначала по пути обеспечения машиностроительной и металлургической промышленности приборами для эмиссионного спектрального анализа, а затем и по пути обеспечения химической и близких к ней отраслей промышленности приборами для абсорбционного анализа по электронно-колебательным и чисто колебательным спектрам. [c.9]

    При измерениях в условиях производства регистрируется лишь общий уровень шума, а для спектрального анализа используют магнитофонную запись шума, которая расшифровывается на стационарной аппаратуре. Для измерения шума используют отечественные шумомеры Ш-63, Ш-71, прибор И111В-2 в комплекте с октавными фильтрами. Для анализа шума применяют спектрометры С-34. [c.107]

    При глубоком обессоливании зольность нефти обычно выражается сотыми (реже десятыми) долями процента. Однако ванадий является весьма агрессивным компонентом тяжелых топлив (котельных, газотурбинных), и присутствие его в золе иефти нежелательно. Пысокое значение зольности, сопровождаемое повышенным содерлонием в золе кальция и натрия, свидетельствует о неудовлетворительном обессоливании нефти. В результате возникает эрозия аппаратуры, получаются зольные некондиционные котельные топлива и кокс. Определение зольности проводят по ГОСТ 1461—75. Состав золы устанавливают редко, только при специальных глубоких исследованиях нефти и ее остатков с использованием методов спектрального анализа. [c.63]

    С. Л. Мандельштам. Введение в спектральный анализ. Гостехиздат, 1946, (260 стр.). В книге рассмотрены физические принципы, лежащие в основе спектральных методов и аппаратуры. Рассмотрены также различные случаи применения спектральноаналитических методов. Много внимания уделено строению спектров, подробно рассмотрены различные источники возбуждения, описана аппаратура для наблюдения и регистрации спектров, свойства фотоматериалов и т. д. Техника спектрального анализа затронута лишь попутно. [c.488]

    А. К. Русанов. Спектральный анализ руд и минералов. Госгеолиздат, 1948, (260 стр.). В основе монографии лежит двадцатилетыий опыт работы автора. В книге описывается аппаратура и методы спектрального анализа, однако основное место занимают практические указания по определению свыше 50 элементов в рудах. В приложении даются таблицы спектральных линий и атлас дуговых спектров элементов. [c.488]

    Несмотря на большую простоту аппаратуры и техники работы, визуальные методы (особенно стилометрический) позволяют получать точность, не очень уступающую другим методам, более длительным и сложным. Благодаря этому визуальные методы до сих пор широко применяются в эмиссионном спектральном анализе, когда требуется большая скорость анализа при не слишком высоких требованиях к точности и чувствительности. [c.157]

    В качественном ато.мно-эмиссионмом спектральном анализе в отличие от химического ие требуется сложных операций по групповому разделению элементов. С помощью этого метода можно легко различить два металла с близкими химическими свойствами. Например, неодим и иразеодим при их совместном присутствии идентифицирую1ся с не меньшей простотой, чем алюминий и магний. Результаты анализа в любой момент могут быть проверены путем повторного изучения спектрограммы. Этот метод особенно ценен тогда, когда неизвестен общий химический состав анализируемого вещсства или необходимо обнаружить искомый элемент в пробе. Для выполнения анализа небольшая навеска или капля раствора, нанесенная на торец углеграфитового электрода, возбуждаются электрической дугой, а спектр снимается на фотопластинку или изучается визуально. Присутствие или отсутствие элемента в пробе безошибочно может быть установлено по двум-трем характерным спектральным линиям. Этим методом можно быстро определить один или несколько металлов. Спектральные линии благо-ролных газов, галогенов, серы и некоторых редких тяжелых металлов малочувствительны или для их определения требуются специальные приемы и соответствующая аппаратура, что делает выполнение анализа более сложным, чем химическими методами. [c.665]

    Для анализа необходимы разнообразные методы, поскольку каждый из них имеет свои достоинства и ограничения. Так, чрезвычайно чувствит. радиоактивационные и масс-спектральные методы требуют сложной и дорогостоящей аппаратуры. Простые, доступные и очень чувствит. кинетич. методы не всегда обеспечивают нужную воспроизводимость результатов. При оценке и сопоставлении методов, при выборе их для решения конкретных задач принимаются во внимание мн. факторы метрологич. параметры, сфера возможного использования, наличие аппаратуры, квалификация аналитика, традиции и др. Важнейшие среди этих факторов-такие метрологич. параметры, как предел обнаружения или диапазон концентраций (кол-в), в к-ром метод дает надежные результаты, и точность метода, т.е. правильность и воспроизводимость результатов. В ряде случаев большое значение имеют многокомпонентные методы, позволяющие определять сразу большое число компонентов, напр, атомно-эмиссионный и рентгеновский спектральный анализ, хроматография. Роль таких методов возрастает. При прочих равных условиях предпочитают методы прямого анализа, т. е. не связанного с хим. подготовкой пробы, однако иногда такая подготовка необходима. Напр., предварит, концентрирование исследуемого компонента позволяет определять меньшие его концентрации, устранять трудности, связанные с негомог. распределением компонента в пробе и отсутствием образцов сравнения. [c.160]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ, метод качеств, и количеств, определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный С. а., задачи к-рых состоят в определении соота. элементного и молекулярного состава в-ва. Эмиссионбый С. а. проводят по спектрам испускания атомов, ионои или молекул, возбужденных разл. способами, абсорбционный С. а.-по спектрам поглощения электромагн. излучения аиализнруем1>1ми объектами (см. Абсорбционная спектроскопия). В зависимости от цели исследования, св-в анализируемо о в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метрологич. характеристики результатов сильно различаются. В соответствии с этим С. а. подразделяют на ряд самостоят. методов (см., в частности, Ато.мно-абсорбционный анализ. Атомно-флуоресцентный анализ, Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Люминесцентный анализ. Молекулярная оптическая спектроскопия. Спектроскопия отражения, Спектрофотометрия, Ультрафиолетовая спектроскопия, Фотометрический анализ, Фурье-спектроскопия, Рентгеновская спектроскопия). [c.392]

    Инструментальные методы анализа — количественные аналитические методы, для выполнения которых требуется электрохимическая оптическая, радиохимическая и иная аппаратура. К И, м. а. обыч1ю относят 1) электрохимические методы— потенциометрию, полярографию, кондуктометрию и др. 2) методы, основанные на испускании или поглощении излучения,— эмиссионный спектральный анализ, фотометрические методы, рентгеноспектральный анализ и др. 3) масс-спектральный анализ 4) методы, основанные на измерении радиоактивности. Имеются и другие И. м. а. [c.57]

    Преимз7пества спектрального анализа заключаются, как известно, п его высокой чувствительности (степень чувствительности зависит в значительной мере от техники эксперимента и качества аппаратуры), позволяющей успешно обнаруживать и полуколичественпо определять 0,001—0,1% висмута одновременно с другими элементами из минимальных навесок в свинце, меди, олове, сурьме, различных сплавах, минералах, рудах, горных породах, биологических материалах. Необычайная простота исследования обеспечивает быстроту определения при серийных анализах металлов. Спектральный анализ требует наличия сравнительно дорогой аппаратуры и специально подготовленных кадров. При помощи спектрального анализа в некоторых полиметаллических рудах был открыт висмут, произведены исследования громадного количества руд ц минералов на содержание висмута и других металлов, изучено распределение висмута в полупродуктах свинцовых заводов и др. [c.12]

    Преимущество спектрального метода — высокая чувствительность, достаточно высокая точность [435а], отсутствие влияния посторонних элементов (за исключением самых тяжелых), а следовательно, возможность прямого определения бериллия без трудоемкого отделения мешающих примесей. Чувствительность метода может быть увеличена при комбинировании его с химическими методами обогащения (ионного обмена, экстракции, соосаждения). Кроме того, чувствительность и точность спектрального анализа постоянно повышаются благодаря совершенствованию аппаратуры и введению в практику новых методов (фракционного испарения с носителем, методов с использованием электродов специальной конструкции, метода прикатодного усиления и т. д.). [c.90]

    Входной и выходной сигналы фильтра являются цифровыми, так что в устройстве циркулируют только двоичные коды. Поскольку операция з ножения отсчетов цифрового сигнала на число иногда выполняется неточно за счет округлений или усечений произведений, в общем случае цифровое устройство неточно реализует заданную функцию, и выходной сигнал отличается от точного решения. Следует помнить, что в цифровом фильтре погрешность выходного сигнала не зависит от условий, в которых работает фильтр температуры, влажности и т.п. Кроме того, эта погрешность контролируема - ее можно уменьшить, увеличивая число разрядов, используемых для представления отсчетов цифровых сигналов. Именно этим определяются основные преимущества цифровых фильтров - высокая точность обработки сигналов и стабильность характеристик - по сравнению с аналоговыми и дискретными фильтрами. Строго говоря, цифровые фильтры представляют собой нелинейные устройства, к которым не следовало бы применять методы анализа и синтеза линейных систем. Однако число разрядов в кодах, циркулирующих в цифровых фильтрах, как правило, достаточно велико, чтобы сигналы могли считаться приблизительно дискретными, а фильтры -- линейно дискретными. Достоверность результатов измерений зависит от соотношения сигнал-шум, параметров помех, действующих в канале измерения, разрядности применяемой аппаратуры аналого-цифрового преобразования и качества алгоритмов последующей обработки результатов измерения. В настоящее время основным способом повышения достоверности результатов измерения является построение новых алгоритмов обработки цифровых отсчетов аналогового сигнала (цифровая фильтрация, спектральный анализ, адаптивные и оптимальные методы обработки). [c.144]

    Несмотря на большое разнообразие выпускаемой вибродиагностической аппаратуры, структурные схемы аппаратов различаются, главным образом, только типами применяемых в них фильтров для спектрального анализа. [c.609]

    Глава о спектральном анализе составлена А. К. Бабко и О. П. Рябушко. Остальные разделы написаны коллективно тремя авторами. При этом разделы о классификации, чувствительности и точности методов, о хроматографии и о люминесцентном анализе составлены А. К- Бабко разделы об электроизмерительной аппаратуре и электрохимических методах написаны И. В. Пятницким, а фотометрические методы — А. Т. Пилипенко. [c.4]

    К недостаткам качественного спектрального анализа можно отнести его непригодность для обнаружения таких элементов, как азот, кислород, сера, галогены, а также тот факт, что он является деструктивным методом анализа, при котором разрушается анализируемый образец. Кроме того, метод не очень удобен для небольших лабораторий, в которых выполняются единичные анализы, из-за дороговизны аппаратуры. Однако для массовых анализов в тех случаях, когда скорость и высокая чувствительность явля от-. ся основными требованиями, эмиссионный спектральный анализ оказывается иключительно удобным методом качественного исследования. Поэтому он нашел широкое применение в качественном анализе природных объектов (солей, минералов, руд, воды), металлов и сплавов, многих промышленных материалов и продуктов (красителей, лаков, керамических изделий и др.). Без преувеличения можно сказать, что сегодня этот метод наиболее широко используется для качественного элементарного анализа неорганических образцов (подробнее см, в гл, ХП), [c.192]

    Помимо основной аппаратуры, применяют ряд приспособлений для подготовки пробк йнализу, а также приборы, облегчающие проведение анализа и обработку его результатов. Известно значительное число специализированных установок для спектрального анализа, приспособленных к анализу определенных объектов и к решению довольно узкого круга задач. К их числу относятся стилоскопы, стилометры, квантометры, пламенные фотометры. [c.175]

    Первый отечественный спектрограф для ультрафиолетовой и видимой области спектра был разработан в Государственном оптическом институте (ГОИ) в Ленинграде под руководством акад. Д. 6. Рождественского и выпущен в 1936 г. Эмиссионный спектральный анализ (анализ по спектрам излучения) начал применяться в промышленности и геологии. После Великой Отечественной войны серийное изготовление спектрографов было налажено И. А. Шо-шиным на Государственном оптико-механическом заводе имени ОГПУ в Ленинграде. В 1945 г. был выпущен спектрограф ИСП-22 с комплектом вспомогательной аппаратуры, а затем разработаны и другие типы спектральных приборов большим стимулом к их разработке и выпуску послужило данное ГОМЗу в 1951 г. правительственное задание — оснастить МГУ новейшими приборами. [c.9]


Смотреть страницы где упоминается термин Спектральный анализ аппаратура: [c.285]    [c.12]    [c.155]    [c.423]    [c.12]    [c.42]    [c.275]    [c.81]   
Физико-химические методы анализа Издание 3 (1960) -- [ c.152 ]




ПОИСК





Смотрите так же термины и статьи:

Спектральный анализ



© 2025 chem21.info Реклама на сайте