Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы электролитические

    Можно ли рассматривать процесс электролитической диссоциации как обратимую реакцию  [c.74]

    Большое значение для развития физической химии имели работы И. А. Каблукова (1857—1942), который, исходя из гидратной теории Д. И. Менделеева, установил явление гидратации ионов электролитов в водных растворах и сущность химического взаимодействия в процессах электролитической диссоциации (1891). Им впервые были выполнены работы по исследованию поведения электролитов в неводных растворах. Каблуков организовал первую кафедру физической химии в сельскохозяйственном вузе и начал читать систематический курс физической химии будущим агрономам. [c.9]


    Процесс электролитической диссоциации изображают, пользуясь химическими уравнениями. Наиример, диссоциация НС1 выразится уравнением  [c.234]

    Объясните процесс электролитической диссоциации в воде веществ с ионным типом связи. Приведите примеры. [c.74]

    Изучение водородного перенапряжения позволяет выяснить механизм этой реакции и представляет большой интерес с теоретической точки зрения. Установленные при этом закономерности можно частично распространить и на другие электрохимические реакции, что значительно повышает теоретическую значимость работ по водородному перенапряжению. Изучение водородного перенапряжения имеет также большое практическое значение, потому что современная промышленная электрохимия является преимущественно электрохимией водных растворов, и процессы электролитического разложения воды могут накладываться на любые катодные и анодные реакции. Водородное перенапряжение составляет значительную долю напряжения на ваннах по электролизу воды и растворов хлоридов. Знание природы водородного перенапряжения позволяет уменьшить его, а следовательно, снизить расход электроэнергии и улучшить экономические показатели этих процессов. В других случаях (электролитическое выделение металлов, катодное восстановление неорганических и органических веществ, эксплуатация химических источников тока) знание природы водородного перенапряжения позволяет успешно решать обратную задачу — нахождение рациональных путей его повышения. Все эти причины обусловили то, что изучение процесса катодного выделения водорода и природы водородного перенапряжения всегда находилось и находится в центре внимания электрохимиков. [c.397]

    Некоторые вещества, называемые электролитами, обладают способностью при растворении в соответствующих растворителях, например в воде (к которой первоначально и относилась теория Аррениуса), распадаться иа противоположно заряженные частицы—ионы. Распад электролитов на ионы при растворении был назван процессом электролитической диссоциации, отсюда и теория Аррениуса называется теорией электролитической диссоциации. [c.34]

    Первое систематическое исследование электролиза никеля было предпринято в 1923—1928 гг. П. П. Федотьевым. вместе с М. И. Шубиным и И.. Е. Мокеевым в Петроградском политехническом институте. Был изучен процесс электролитического осаждения никеля из сернокислых растворов с применением нерастворимых анодов. [c.291]


    В зависимости от состава раствора, подвергающегося электролизу, процесс электролитического выделения кислорода может протекать различными путями. При электролизе растворов щелочей наиболее вероятным источником анодного кислорода являются ионы гидроксила. Суммарную реакцию образования кислорода за счет разряда этих ионов на аноде можно представить как [c.419]

    При данном значении потенциала электрода скорость процесса электролитического восстановления (или окисления) обычно растет с увеличением концентрации разряжающи.хея частиц. Однако такая простая зависимость наблюдается не всегда. В кинетических уравнения.ч, описывающих реакции электровосстановления (или электроокисления), концентрации исходных веществ могут входить со степенями, большими единицы, равными нулю или правильной дроби. В уравнеиия, описывающие кинетику электровосстановления органически.х соединений, их объемная концентрация в.ходит обычно в дробной степени. [c.434]

    До СИХ пор рассматривалась роль, которую адсорбция играет лишь непосредственно в самом процессе электролитического восстановления (или окисления). Этот фактор должен сказываться и [c.452]

    О неполной диссоциации на ионы многих электролитов в растворе говорит также и возрастание эквивалентной электропроводности с разбавлением. При повышении концентрации, наоборот, эквивалентная электропроводность уменьшается. Поэтому процесс электролитической диссоциации можно считать обратимым. [c.166]

    Основным аппаратом в процессе электролитического получения алюминия является электролизер или алюминиевая ванна (рис. 2.9). [c.32]

    В то же время примеси с большим потенциалом остаются в слое рафинируемого металла и накапливаются в слое электролита. По мере накопления примесей анодный спав и электролит периодически заменяют. Энергоемкость процесса электролитического рафинирования составляет около 18 МВт-ч на тонну металла. Полученный этим методом рафинирования алюминий имеет чистоту 99,99%. [c.36]

    В табл. 1Х-4 показано распределение компонентов анодной меди по трем продуктам электролиза в соответствии с возможным составом анодной меди, содержащей 99,0—99,7% Си, и закономерностями процесса электролитического рафинирования. [c.308]

    По общепринятым сейчас представлениям, истоки которых можно найти в работах И. А. Каблукова (1891), энергия, обеспечивающая разрыв связей в молекуле пли в решетке кристалла, а следо-вател[)Ио, и появление попов, выделяется в самом процессе электролитической диссоциации и представляет собой результат взаимодействия между растворяемым веществом и растворителем. Благодаря этому взаимодействию образуются комплексы, состоящие из молекул растворителя, т. е. сольватированные или, в случае водных растворов, гидратированные ионы. Энергетические эффекты, наблюдающиеся ири этом, были названы, по предложению Фаянса (1915), энергиями сольватации АОс. = ис) или, в водных средах, гидратации (—А0,.= 7г), а соответствующие тепловые эффекты — теплота-ми сольватации (—АНс= с.) и гидратации (—АЙг = ()г)- [c.47]

    Потери металлов в процессе электролитического рафинирования меди [c.206]

    Влияние органических соединений на процесс электролитического осаждения никеля [c.340]

    Перспективы дальнейшего развития процесса электролитического рафинирования никеля [c.384]

    Использование растворов с высокой концентрацией никеля (75—85 г/л) возможно только при условии применения хлоридных растворов Применяя хлоридные растворы, можно повысить плотность тока без заметного повышения напряжения на ванне и тем самым интенсифицировать процесс электролитического рафинирования никеля. В табл. 86 приведены расчетные данные на основании результатов лабораторных опытов. [c.385]

    Перспективы развития и рационализации процессов электролитического получеиия цинка [c.486]

    ТАБЛИЦА 109. СРАВНЕНИЕ показателей СТАНДАРТНОГО И ИНТЕНСИФИЦИРОВАННОГО ПРОЦЕССОВ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ ЦИНКА [c.486]

    Термодинамические характеристики (298 К) процесса электролитической диссоциации в водных растворах следующие  [c.76]

    Рассчитайте ЛС для каждой ступени диссоциации. Что можно сказать о силе электролита По какой ступени идет преимущественно процесс электролитической диссоциации  [c.77]

    Для проведения процесса электролитического выделения вещества можно использовать следующую простую схему (рис. Д.85). Через регулируемое сопротивление R и амперметр А от источника постоянного тока подают на электроды постоянное напряжение, контролируемое вольтметром V (рис. Д.85) напряжение можно менять. Во избежание ошибок при разделении напряжение, фиксируемое на клеммах, не должно превышать допустимой величины. В конце выделения напряжение на клеммах падает вследствие резкого увеличения напряжения поляризации. [c.263]

    В гл. 1 было показано, что образование ионов нри растворении электролитов, т. е. процесс электролитической диссоциации, требует значительной затраты энергии. Происхождение этой энергии даже не рассматривалось в теории Аррениуса, хотя без решения этого вонроса невозможно понять ни причин, лежащих в основе электролитической диссоциации, ни ее природы. [c.47]


    К 3—4 каплям раствора Си304 прилить по каплям раствор щелочи. Наблюдать образование осадка. Отметить его цвет. Составить уравнение процесса электролитической диссоциации взятой соли и уравнение реакции взаимодействия ионов меди с гидроксильными ионами щелочи. [c.92]

    Все эти особенности строения кристаллических тел должны учитываться при рассмотрении процессов формирования и развития кристаллических осадков в условиях электролиза, в частности при пропессах катодного осаждения металлов. Близость процессов электролитического выделения металлов и образования кристаллов из газообразной, жидкой или твердой фаз подчеркивается в названии электрокрисгаллтищия, предложенном для их описания В. А. Кистяковским. [c.335]

    Любая из этих четырех стадий может определять скорость всего процесса электролитического образования водорода и быть причиной появления водородного перенапряжения. В данном случае торможения, связанные с транспортировкой веществ (стадия I), не играют существенной роли. В литературе имеются, однако, указания на то, что при высоких плотностях тока в кислых растворах из-за замедлеппости доставки НзО+-ионов реакция разряда должна описываться уравнением (19.2), а не (19.1). [c.404]

    Механизм процесса электролитической диссоциации. Первоиа чально сформулированная Сванте Аррениусом теория электролитической диссоциации не учитывала всей сложности взаимодействия электролитов с молекулами растворителя. Ясное представление о механизме процесса электролитической диссоциации сложилось ыа основе использования наряду с теорией Аррениуса сольватной теории растворов Д. И. Менделеева и работ И. А. Каблукова, посвященных сольватации ионов. [c.171]

    Процесс электролитической диссоциации протекает пе одинаково у истинных и потенциальных электролитов. Истинные электролиты, т. е. вещества ионного характера — соли, диссоциируют пп ионы уже при расплавлении в результате ослабления связей между ионами в кристаллической решетке. В процессе растворения в воде (или других полярных растворителях) молекулы растворителя вытягиварот с поверхности кристалла соли в первую очередь положительно заряженные ионы, что влечет за собой и выпадение из решетки отрицательно заряженных ионов с последующей их гидратацией. В том и другом случае в исходном электролите — кристалле соли — уже имеются готовые противоположно заряженные ионы, но только связанные друг с другом при расплавлении или растворении происходит, таким образом, просто распад системы ионов на составляющие. [c.171]

    Электрический заряд на коллоидных частицах возникает в результате процесса электролитической диссоциации вещества дис-нерсиой фазы или вследствие избирательной адсорбции ионов из дисперсио1шой среды на поверхности частиц дисперсной фазы. Наличие заряда у коллоидных частиц можно обнаруж1ггь, пропуская через коллоидную систе.му постоянный электрический ток, под действием которого частицы перемещаются к электродам. Перемещение частиц дисперсной фазы под действием электрического тока называется электрофорезом. [c.194]

    Основными производствами, составляющими технологическую цепочку Руда- Глинозем Алюминий, является производства глинозема и алюминия. Территориально они обычно разделены. Вследствие высокой энергоемкости процесса электролитического восстановления алюминия алюминиевые заводы располагаются в районах с дешёвой электроэнергией ГЭС. Производства глинозема, наоборот, базируются в местах добычи алюминиевых руд с тем, чтобы сократить расходы на перевозку сырья. Примером производства с полным циклом (от руды до рафинированного металлического алюминия) являются Волховский и Каменец-Уральский заводы. На других предприятиях этой отрасли осуществляется только часть технологической цепочки производство глинозема (Ачинск, Вокситогорск) или выплавка алюминия (Кандалакша, Волгоград, Новокузнецк, Братск, Красноярск). [c.19]

    В 20-х годах. XX века большой сдвиг в этом направлении был сделан советскими учеными, обогатившими молодую науку и производство в области гальванотехники новыми замечательными работами и открытиями. К числу таких работ следует прежде всего отнести теоретические и технологические исследования процесса электроосаждения металлов, выполненные проф. П, П. Федотьевым, акад. В. А. Кистяковским, чл.-корр. АН СССР Н. А. кзгарышевым, проф. Ю. В. Баймаковым и их учениками. Эти работы способствовали развитию, совершенствованию и внедрению новых процессов электролитического покрытия металлами и сплавами. [c.332]

    Электролитическое железнение применяется главным образом для повышения поверхностной твердости и сопротивления механическому износу изделий. При определенных условиях электролиза (высокая плотность тока, не очень высокая температура, присутствие в электролите специальных добавок) можно получать осадки железа, по твердости равного и даже превышающего твердость высокоуглеродистой стали, что объясняется главным образом структурными особенностями покрытия. В связи с этим процесс электролитического железнеиия часто называют осталиванием, хотя осадки железа почти не содержат углерода. [c.406]

    В процессе электролитического рафинярования никеля в сульфатных растворах в приоугствии пуминовых кислот и другие продуктов экстракции дерева содержание углерода может возрасти до 0,01 /о. [c.80]

    Как было показано выше, в процессе электролитического рафинирования меди в растворе накапливз ется медь и убывает содержание серной кислоты. Этот избыток меди, остающийся в рас- [c.184]

    Обслуживание электролиза мало чем отличается от обслуживания процесса электролитического рафинирования, количество операций меньше. Дело в том, что аноды заменяют выборочно один раз за 5—6 месяцев. Плечики анодных штанг припаяны к шинкам, анод и штанга представляют единое целое (см. гл. VIII, 5). [c.232]

    В. Н. Розов. Интенсификация процесса электролитического рафинирования никеля. Материалы совещания по вопросам интенсификации и усовершенствования добычи и технологии переработки медно-никелевых и никелевых руд, Профиадат, 1957. [c.378]

    В главах П1—VHI лри описании процессов электролитического рафинирования металлов или их электролитического получения из растворов приведены данные о силах тока, применяемых на отдельных установках. Сила тока в цепи колеблется в зависимости от масштабов производства от 2000 до 25000 а. Ее подбирают из расчета получения стандартного напряжения в электрической цепи последовательно включенных ванн. С другой стороны, чем больше сила тока на ваннах, тем экономичнее их обслуживание. В диапазоне напряжений 100—250 в применяют моторгенераторы или контактные преобразователи для больших напряжений (350—800 в) используют ртутные преобразователи различных систем. В последние годы начинают применять батареи германиевых или кремниевых выпрямителей на любые напряжения до 1000 и на силы тока до 100 Ка. [c.591]

    Процессы электролитического получения металлов из растворов с иерастворимыми анодами. [c.604]


Смотреть страницы где упоминается термин Процессы электролитические: [c.414]    [c.673]    [c.323]    [c.323]    [c.531]    [c.76]    [c.84]   
Химические источники тока (1948) -- [ c.72 ]




ПОИСК







© 2025 chem21.info Реклама на сайте