Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура, влияние ва вес органических соединений

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]


    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]

    Разница в температурах кипения алканов, содержащих одинаковое число атомов углерода, но имеющих различное строение, несколько меньше. На стр. 97 и 103 приведены температуры кипения изомерных бутанов, пентанов и гексанов. В каждом случае изомер с разветвленной цепью имеет более низкую температуру кипения, чем изомер с прямой цепью, и, кроме того, чем больше разветвлений, тем ниже температура кипения. Таким образом, / -бутан кипит при О °С, а изобутан — при —12 °С. н-Пентан кипит при 36 °С, изопентан (одно разветвление) — при 28 "С, а неопентан (два разветвления)— при 9,5 °С. Подобное влияние разветвления на температуру кипения наблюдается для всех классов органических соединений. Понижение температуры кипения с увеличением разветвлений вполне понятно форма разветвленных молекул стремится к сферической при этом площадь поверхности уменьшается и в результате уменьшаются межмолекулярные силы, которые теперь преодолеваются при более низкой температуре. [c.109]


    Ниже рассмотрено влияние некоторых из этих факторов на температуру плавления органических соединений. [c.247]

    Вандерваальсовы силы, слагающиеся из ориентационного (преимущественно), индукционного и дисперсионного эффектов, повышают температуру плавления вещества. Однако их влияние на температуру плавления органических соединений, по-видимому, невелико, так как все три эффекта очень быстро убывают с расстоянием (пропорционально -рд- ) и с повышением температуры, особенно ввиду уничтожения ориентационного эффекта тепловыми колебаниями. [c.248]

    Влияние различных веществ. Помимо металлов и солей, катализирующих в той или иной мере окисление масел, существуют различные органические соединения, выполняющие ту же роль. Действие их заключается в том, что они либо легко активизируются и образуют с молекулярным кислородом перекиси, либо содержат уже в своем составе активные молекулы и являются, таким образом, первичными элементами в цепи реакций окисления [12]. Исследования Френсиса [44] показали, что прибавление скипидара к парафину значительно облегчает окисление последнего уже при температуре 100—110°. Многие промежуточные продукты окисления являются катализаторами, ускоряющими автоокисление. В работах Френсиса с сотрудниками [45] показано, что для достижения в окисляемом парафине при 100° концентрации кислорода 7% требуется вести окисление 1250 час. Тот же эффект достигается за 390 час. при добавлении к окисляемому парафину 5% кислот—продуктов окисления. Аналогичная картина наблю- [c.290]

    Основные научные исследования относятся к химии силикатов. Изучал влияние больших давлений (до 4000 кгс/см ) на температуру кристаллизации органических соединений (1909—1912), а также на состав эвтектик в бинарных системах (натрий — ртуть, уретан — [c.151]

    Что происходит с органическими соединениями в пластовых водах Какова их дальнейшая судьба Во-первых, идут химические превращения. Самые обычные органические соединения в водах — жирные кислоты, наиример муравьиная кислота, уксусная кислота и др. Некоторые из этих кислот под действием повышенных температур и других условий могут частично превращаться в нефтяные углеводороды. Таким путем запас вещества, который пригоден для образования нефти, может пополняться уже в водной среде коллекторских пород. Опять мы наблюдаем благотворное влияние водной среды и самой воды на возникновение нефти. [c.41]

Рис. 3.10. Влияние концентрации с, температуры Т и числа углеродных атомов в молекуле Пс на форму кривых зависимости величин адсорбции органического соединения от потенциала Рис. 3.10. <a href="/info/6816">Влияние концентрации</a> с, температуры Т и <a href="/info/96163">числа углеродных</a> атомов в молекуле Пс на <a href="/info/306364">форму кривых</a> <a href="/info/301012">зависимости величин адсорбции</a> <a href="/info/428">органического соединения</a> от потенциала
    Центральная роль в теории НДС отводится представлениям о существовании дисперсных частиц, или структурных единиц, различного типа. Особенностью последних, в отличие от дисперсных частиц классических дисперсных систем, является то, что они формируются в нефтяных системах, состоящих из большого числа компонентов, в том числе гомологов, относящихся к различным классам органических соединений с мало различающимися потенциалами межмолеку-лярного взаимодействия. Поэтому существование совокупности молекул с близкими потенциалами меж-молекулярного взаимодействия как единого целого в виде структурных единиц находится в сильной зависимости от внешних условий (температуры, давления, изменения состава дисперсионной среды и т. д.). Внутреннее строение структурных единиц, состоящих из ядра и примыкающего к нему адсорбционно-сольватного слоя, также имеет свои особенности, заключающиеся в условности границ раздела между ядром, адсорбционно-сольватным слоем и дисперсионной средой. Под влиянием внешних условий происходит экстремальное изменение размеров ядра и адсорбционно-сольватного слоя структурных единиц НДС, что проявляется через соответствующее экстремальное изменение макросвойств НДС и, несомненно, влияет на результаты их технологической переработки. Отметим, что в отличие от принятой в настоящее время технологии предлагаемая физико-химическая технология, обеспечивающая интенсификацию как недеструктивных, так и деструктивных технологичес- [c.7]

    Фенол — типичный полярный растворитель со средней растворяющей способностью и средней избирательностью. Под влиянием силового поля молекул фенола в раствор переходят смолистые вещества, полициклические углеводороды, органические соединения серы. С увеличением кратности отношения растворителя к сырью и с повышением температуры растворяющая способность фенола повышается. При температуре, близкой к критической температуре растворения, в экстрактный раствор начинают переходить желательные ароматические углеводороды с длинными алкильными цепями и нафтеновые углеводороды. [c.245]


    Кроме изучения полимеризации чисто органических соединений было исследовано влияние давления на реакции некоторых элементорганических мономеров. При давлении порядка 600 МПа и температуре 120...130°С были выдержаны вместе с катализаторами (пероксиды) кремнийорганические соединения, в углеводородных группах которых имелись ненасыщенные (двойные) связи. Наблюдалась полимеризация кремнийорганических мономеров, причем в зависимости от числа углеводородных групп с двойными связями в молекуле мономера менялся характер полимерного продукта. Чем больше таких групп, тем выше степень полимеризации. [c.201]

    Окружающий нас мир представляет собой материю, существующую в бесконечном разнообразии видов, которые непрерывно переходят друг в друга. Например, в недрах звезд и нашего Солнца прк температурах 10— 20 млн. градусов происходит превращение водорода в гелий. При этом освобождаются колоссальные количества энергии, которые в виде излучения достигают Земли. Под влиянием энергии солнечного света растения превращают диоксид углерода в сложные органические соединения и освобождают кислород. Кислород участвует в процессах окисления, которые всегда идут с выделением тепла. Из этих примеров видно, что материя и энергия неразрывно связаны. Все процессы, совершающиеся в природе, в ходе которых изменяется состояние материи, сопровождаются и изменение энергии. Большинство подобных процессов включают в себя химические реакции. Образование залежей каменных углей и нефти связано с цепью сложных химических реакций, в которых участвовали остатки растений и морских животных и другие вещества, находившиеся миллионы лет под воздействием тепла Земли и высоких давлений. Происхождение залежей руд также связано с протеканием многочисленных химических реакций. По мере остывания расплавленного вещества Земли тяжелые металлы, взаимодействуя с кислородом и серой, образовали сульфидно-оксидный слой, расположившийся над железо-никеле- [c.13]

    Такой же процесс может происходить и в органических молекулах, оказывая аналогичное влияние на температуру кипения. При сравнении этого физического свойства серии изомерных органических соединений можно увидеть, что у всех веществ, в состав которых входит группа ОН или ЫН, температура кипения значительно выше, чем у изомеров, лишенных этой характерной особенности (табл. 9.2 и 9.3). [c.176]

    На скорость, направление и селективность гидрирования некоторое влияние оказывает и реакционная среда, т. е. природа и количество растворителя. Наиболее часто в качестве растворителя используются этиловый и метиловый спирты, уксусная кислота, реже - диоксан, бензол (очищенный от тиофена), циклогексан и др. Лучшие растворители водорода - насыщенные углеводороды, в которых его растворимость в 3 раза выше, чем в спиртах, однако они не всегда достаточно хорошо растворяют восстанавливаемые органические соединения. Слишком летучие растворители, в частности эфир, при высоких температурах создают дополнительное давление в реакторе (автоклаве), при низких - затрудняют точное измерение количества поглощенного водорода. Вода иногда применяется при гидрировании кислот, их солей и других растворимых в ней веществ. Обнаружено, что она ухудшает избирательность восстановления винилгалогенидов, способствуя гидрогенолизу связи С-галоген. [c.39]

    Для формирования компактных осадков олова необходимо присутствие одной или нескольких добавок органических веществ. Благоприятное влияние оказывают органические соединения ароматического ряда — технические фенол и крезол, коллоиды— клей и желатин, ПАВ, обладающие смачивающим и ингибирующим действием (ОС-20) и т. д. Температура электролита 18—30 °С. Плотность тока в электролитах без перемешивания до 200 АУм и до 500 А/м с перемешиванием. [c.294]

    Воздушные среды, содержащие углекислоту, аммиак, этиловый спирт и другие вещества, могут стимулировать развитие отдельных, видов грибов. Основным фактором, способствующим развитию грибов, является вода, которая составляет главную часть клеточного тела гриба. Пылевидные частицы, оседающие на поверхности изделия, обычно содержат споры грибов и органические соединения, необходимые для питания грибницы. Эти частицы, являясь гигроскопичными, сохраняют влагу на поверхности материала. Большое-влияние на прорастание спор оказывает температура. Температурный интервал жизнедеятельности грибов достаточно широк (0...+ + 45 °С), при этом каждый вид грибов имеет свой температурный оптимум. Некоторые грибы способны развиваться и при более высоких (термофилы) или более низких (психрофилы) температурах. Отрицательное влияние на рост грибов оказывает движение воздуха, которое препятствует оседанию спор на поверхности материала и повреждает мицелий. Значительное увеличение или уменьшения pH также неблагоприятны для развития грибов. [c.31]

    Действие на ПЭВД органических жидкостей в значительной степени зависит от температуры. При комнатной температуре ПЭВД в течение длительного времени не растворяется в большом числе органических растворителей. Происходит диффузия и постепенное набухание. Имеется большой экспериментальный материал по этол вопросу. В приложении V приводятся данные по действию на ПЭВД как органических соединений, так и неорганических веществ при комнатной и при повышенной температуре. Эти данные позволяют судить как о характере, так и об интенсивности воздействия и влиянии на это воздействие повышенной температуры. Степень набухания ПЭВД в различных органических жидкостях различна и увеличивается с повышением температуры. При температуре приблизительно 60 °С ПЭВД растворим в ряде растворителей, в первую очередь в галогенуглеводородах, производных алифатических и ароматических углеводородов. Действие ПАВ на ПЭВД используется для испытания полимера на стойкость к растрескиванию под напряжением. На стойкость к растрескиванию влияют молекулярно-массовые характеристики полимера. Так, с увеличением молекулярной массы, а также с сужением ММР стойкость ПЭВД к растрескиванию падает. Присутствие низкомолекулярных фракций, наоборот, способствует росту этого показателя. [c.163]

    На состояние гидратного слоя оказывают влияние различные факторы, определяющие результат флотации. Со стороны твердой фазы это степень метаморфизма угля, характер минерализации, крупность частиц. Со стороны жидкой фазы гидратацию определяют свойства воды содержание минеральных включений, ионный состав, pH, температура, наличие в воде органических соединений и ПАВ. [c.222]

    При этой полимеризации в среде полярных растворителей влияние металла катализатора на полимеризацию значительно ослабляется вследствие образования комплекса металл — растворитель и уменьшения способности атома металла образовывать комплекс с мономером. При этом полимеризация приближается к анионной. Действительно, при замене углеводорода на эфир, диоксан или при добавлении к углеводороду небольших количеств спиртов и фенолов в результате полимеризации бутадиена в присутствии литийорганических соединений получается полибутадиен с преобладанием структуры 1,2 (как и в случае полимеризации с органическими соединениями натрия и калия). С металлоорганическими соединениями лития получены и другие стереорегулярные полимеры, причем во всех случаях полимеризация протекала в растворе. При полимеризации метил-, изопропил- и циклогексилмет-акрилатов в присутствии органических соединений лития в толуоле (при низких температурах) были получены изотактические полиметилметакрилат, полиизопропилметакрилат и полиц 1клогексилметакрилат. В аналогичных условиях, но в присутствии полярного растворителя получен синдиотактический полиметилметакрилат. [c.87]

    При изучении закономерностей кислотно-основного взаимодействия (5.1) главными вопросами являются такие, как влияние атомно-электронной природы кислоты и основания на глубину протекания реакции или на константу равновесия, на зависимость от температуры и других воздействий и зависимость реакции (5.1) от природы растворителя. Последнее особенно важно знать в связи с тем, что больщинство реакций с участием органических соединений протекает в растворах и чаще всего сложных, многокомпонентных. Поэтому предсказательная сила термодинамической теории в реакциях (5.1) будет определяться полнотой изучения структурных и сольва-тационных проблем. [c.139]

    В связи с тем, что нет единой точки зрения на влияние органических соединений на температуру пламени и на атомную абсорбцию примесей, был выполнен термодинамический расчет температуры и состава плазмы воздушно-ацетиленового пламени при введении различных органических соединений и воды [399]. Для этого использовали органические растворители с радикалом С2Н5 в соединении с различными функциональными группами, характерными для эфиров, кетонов, спиртов и кислот, а именно диэтиловый спирт, этилметилкетон, этиловый спирт и пропионовая кислота. Расчет проводили на ЭВМ. Минск-32 . Исходными данными служили состав, энтальпия топлива, а также количество используемого органического растворителя, приведенное в табл. 3.20. Условие горения подбирали так, чтобы при введении воды или органических растворителей характер пламени (вид пламени, отсутствие копоти и т. д.) оставался примерно одинаковым. С этой целью при переходе от воды к органическим кислотам и спиртам и особенно к кетонам и эфирам снижали расход ацетилена и увеличивали расход воздуха.  [c.191]

    Н. Н. Бекетов рано лишился матери и под влиянием своей воспитательницы рано приобрел интерес к естественным наукам. Окончив в 1844 году первую Петербургскую гимназию, он поступил в Петер буртский университет на разряд естественных наук 2-го отделения философского факультета. Через два года он перевелся в Казанский университет. В то время в Казанском университете еще преподавал Н. Н. Зинин, выдающийся русский химик-органик, основатель Казанской школы химиков-органиков и первые работы Бекетова были посвящены органической химии. В 1848 году он в качестве дипломной работы представил Рассуждение о действии возвышенной температуры на органические соединения . После окончания Казанского университета Бекетов возвратился в Петербург. В лаборатории Зинина и под его влия-нне.м выполнил магистерскую диссертацию О некоторых новых случая.ч сочетания и общие замеча1ния об этих явлениях . [2, стр. 1]. Диссертацию он защитил 17 мая 18-53 года. Работа Бекетова имела большое значение для того времени. Исследуя образование новых соединений путем сочетания соеди.че- [c.6]

    Начало XX века ознаменовалось, после открытия Ромбергом свободного трифенилметильного радикала, возрождением представления о свободных радикалах как реально существующих осколках молекул. До этого времени на протяжении-40 лет идея о реальности радикалов была изгнана из химии. В радикалах видели только удобный символический прием изображения строения органических соединений. После экспериментального подтверждения реальности радикалов с новой силой ожил интерес исследователей к радикалам, к изучению той роли, которую они могут играть в реакциях. Эту роль еще в середине XIX века предвидели А. М. Бутлеров и другие исследователи, полагавшие, что радикалы реально существуют. Новый мир радикалов как частиц с весьма своеобразными свойствами, необычайно активных относительно реакций, в которые они могут вступать, прёдстал перед взором исследователей. Возникла новая область науки — химия радикалов, тесно связанная с учением о скоростях превращений — химической кинетикой. Неудивительно-поэтому, что в первой четверти XX века появляются работы, в которых настойчиво проводится мысль о значении радикалов в процессе пиролиза органических веществ [Ц —13]. Встречающиеся в этих работах данные о влиянии температуры и давления на быстроту крекинга и выход продуктов но-13 [c.18]

    Под влиянием катализаторов или при высокой те.мпературе даже прочно связанный водород органических соединений может сделаться настолько подвижным, что становится возможным замещение его дейтерием. Например, насыщенные жприые кислоты в концентрированной серкой кислоте при высокой температуре обменивают на дейтерий атомы водорода у а-С-атома, а при действии тяжелой воды в присутствии 1 %-ной щелочи и платины при 130 , по-видимому, обменивают на дейтерий даже все атомы Н. [c.1145]

    Выделение органической химии в самостоятельный раздел химической науки вызвано многими причинами. Во-первых, это связано с многочисленностью органических соединений (в настоящее время известно свыше трех миллионов органических Еси еств, а неорганических— около 150 тыс.). Вл дряя причина состоит в сложности и своеобразии органических веществ по сравнению с неорганическими. Например, их температуры плавления и кипения имеют более низкие значения они легко разрушаются при воздействии на них даже сравнительно невысоких температур (часто не превышающих 100°С), в то время как неорганические вещества свободно выдерживают очень высокие температуры. Большинство химических реакций с участием органических соединений протекает гораздо медленнее, чем ионные реакции неорганических веществ, что обусловлено природой основной химической связи в органических веществах — ковалентной связью. Углерод, входящий в состав органических веществ, обладает особой способностью соединяться не только с несколькими другими углеродными атомами, но и почти со всеми элементами периодической системы (кроме инертных газов). Следует подчеркнуть, что выход продукта в органической реакции, как правило, ниже, чем при реакции неорганических веществ. Кроме того, в области органической химии приходится сталкиваться с новыми понятиями и явлениями органический радикал, функциональная группа, изомерия и гомология, а также взаимное влияние атомов и атомных групп в молекуле. [c.5]

    Успехи органической химии привели к синтезу многих но-еых органических растворителей с большим диапазоном разнообразных свойств, а с развитием лабораторной техники появилась возможность работать с новыми неорганическими растворителями при повышенных и пониженных температурах и без-Доступа влаги. Все это позволило в некоторых случаях замедлить воду, являющуюся до сих пор универсальным растворителем. Особенно часто воду заменяют другими растворителями при кислотно-основноМ титровании. Причинами служат плохая растворимость некоторых веществ в воде, что особенно характерно для многих органических соединений мешающее влияние гидролиза, например, при титровании кислот в присутствии хлоридов или соответственно ангидридов кислот нивелирующий эффект растворителя, из-за которого невозможно Проводить дифференцированное титрование сильных кислот или оснований в их смеся х высокая полярность воды, что-исключает возможность диффренцированного титрования карбоновых кислот в их смесях. Применению неводных растворителей способствовало также создание чувствительных и надежных инструментальных методов индикации точки эквивалентности. [c.337]

    Давление оказывает влияние не только на скорость и равновесие процесса полимеризации, но и на свойства обр зующихся полимеров. Из уравнения (69) следует, что увеличение давления приводит к увеличению средней относительной молекулярной массы продуктов реакции по достижении равновесия. Однако уравнение (69) выведено в несколько идеализированном предположении, что ЛУ остается неизменным на всех ступенях процесса полимеризанни. На самом деле по Mei)e увеличения относительной молекулярной массы полимеров их сжимаемость уменьшается, и Д1 уменьшается по абсолютной величине, оставаясь, разумеется, всегда отрицательным. Поэтому возрастание относительной молекулярной массы полимеров замедляется с ростом давления. Ввиду этого в конечном продукте. будет преобладать полимер не с наивысшей степенью полимеризации, а с некоторой иной, относительная молекулярная масса которого определяется давлением, температурой, концентрацией катализатора и природо исходного мономера. Рассмотрим как пример теломеризацию, являющуюся реакцией полимеризации непредельных органических соединений в присутствии веществ, которые реагируют с растундши цепями полимера, образуя крайние группы на концах полимерной молекулы, и обрывают таким образом рост цепей. [c.193]

    Из рассмотренных примеров видно, как сильно влияет давление на характер состава конечных продуктов при окислепиг органических соединений и иа температуру проведения этой реакции. Здесь снова наблюдается подтверждение уже изложенных общих положений о влиянии давления на скорость и раврювесие химических реакций. [c.208]

    Диметил- и метилфенилполисилоксаны — наиболее часто применяемые неподвижные фазы. Это объясняется несколькими причинами. Благоприятное изменение вязкости с температурой, которое выражается в низких значениях VT , позволяет применять силиконы как при очень низких (нанример, —50°), так и при сравнительно высоких (до 320 ) температурах, поскольку различия в вязкости при этом не так велики, как для соединений других классов. К тому же при использовании этих линейных полимеров разделительная способность менее подвержена влиянию вязкости. Гораздо более низкое давление пара по сравнению с другими органическими соединениями близкой вязкости и повышенная устойчивость к нагреванию также способствуют широкому использованию силиконов в газовой хроматографии. Эти преимуш,ества особенно заметны в хроматографии с программированием температуры и в изотермических условиях при средних и высоких температурах. [c.193]

    В выпускаемых и широко используемых АЭД-приборах анализируемое вещество из хроматографической колонки вводится непосредственно в плазму конец хроматографической колонки вставляют непосредственно в разрядную трубку, в которой находится плазма (рис. 14.2-10). Поскольку стабильная работа плазмы и чувствительное и селективное детектирование различных элементов требует скоростей потока гелия 30-200 мл/мин, в поток вводится дополнительный гелий. Газ-реагент или маскирующий газ (кислород или водород или комбинация обоих газов для детектирования большинства элементов или смесь азота и метана для детектирования кислорода) также добавляется в поток перед введением его в плазму для повышения селективности и чтобы предотвратить образование углеродных отложений на стенках разрядной трубки. Плазма поддерживается микроволновым генератором низкой емкости (60 Вт) в кварцевой разрядной трубке внутренним диаметром около 1 мм, расположенной в центре микроволновой полости. Поскольку плазма не выдерживает введения больших количеств органических соединений, перед входным отверстием в плазму установлено клапанное устройство. При температуре плазмы более 3000 К определяемые соединения полностью атомизованы, возбуждены и испускают характеристическое излучение. Эта элемент-специфичная эмиссия наблюдается через открытый конец разрядной трубки (чтобы предотвратить мещающее влияние отложений на стенках разрядной лампы) и проходит через проводящую оптику на голографическую решетку, диспергирующую полихроматический свет. Расположенная в фокальной плоскости решетки подвижная 211-строчная фотодиодная матрица детектирует элемент-специфичное излучение. Поскольку диодная матрица покрывает лишь 25 нм всего доступного спектра (165-800 нм), одновременно могут детектироваться лишь те элементы, которые имеют эмиссионные линии, находящиеся достаточно близко, чтобы детектироваться при одном положении диодной матрицы. По этой причине, [c.616]

    Полученные различными авторами данные [125] по гидро-юбессериванию ие противоречат термодинамическим расчетам равновесной глубины гидрообессеривания. В соответствии с этими расчетами увеличение общего давления с 1 до 10 кгс/см способствует интенсификации образования сероводорода из циклических сульфидов, особенно в начальный период. Экспериментально подтверждено, что увеличение глубины превращения органических соединений серы может быть достигнуто не только иовышением давления, но п увеличением удельной поверхности кокса. Максимальная удельная поверхность кокса будет соответствовать наибольшей скорости выделения газов из образца и максимуму иитенснвиости парамагнитных центров. Влияние иа удельную поверхность температуры обработки, размера частиц показано на рис. 34 (см. стр. 163). Зависимость удельной поверхности от длительности тер- [c.214]

    А. И. Титов [52], посвятивший ряд работ нитрованию двуокисью азота органических соединений, установил, что при соответствующих условиях нитрование жирноароматических соединений может привести к вполне удовлетворительным выходам w-нитропроизводных, причем отношение выходов нитро-и динитропроизводных находится в зависимости от концентрации N0 и NOg в реакционной смеси и температуры нитрования. Влияние первого фактора доказано им экспериментально следующим образом он смешивал одни и те же количества двут окиси азота (25 мл) и безводной uSOi (20 г) с различными количествами толуола и выдерживал эту смесь при 20° в течение 30 дней. Результаты оказались следующими  [c.376]

    Возможности возникновения сульфида кальция в золе рассмотрены также в работах Виккерта [Л. 126]. Он установил, что при совместном прокаливании FeS и СаО в воздухе всегда образуется только aS04. Образование aS никогда не наблюдалось, несмотря даже на то, что чистая aS при температурах ниже 900 С в окислительной среде весьма медленно окисляется в сульфат кальция. Возникновение сульфида кальция происходило только при совместном нагревании СаО и органических соединений серы. Это дало возможность Виккерту предположить, что сульфид кальция в золе может получаться лишь на базе органической серы топлива. По мнению X. X. Арро при обсуждении изложенного следует наряду с другими обстоятельствами учитывать также и каталитическое влияние РегОз, которое сильно повышает ско- [c.122]

    Из данных табл. 5.6 видно, что при нормальной температуре под действием большинства неорганических и органических соединений физико-механические свойства полипропилена изменяются в ничтожной степени. Помимо органических растворителей, о которых упоминалось выше, на иолипроиилен неблагоприятно действуют прежде всего окислители, например концентрированные азотная и серная кислоты и хромовая смесь, особенно при высоких температурах. Вода (даже ири иовышенной температуре) не оказывает на полипропилен сколько-нибудь значительного влияния, так что изделия из него можно кипятить и стерилизовать при температурах до 130° С. [c.121]

    Для органических соединений их молекулярная структура и характер содержащихся в них функциональных групп являются наиболее важными факторами, определяющими взаимодействие с полиамидами. Поведение неорганических кислот и их водных растворов зависит от подвижности иона водорода и его взаимодействия с амидной группой. Кислоты, являющиеся окислителями, такие как азотная кислота, могут взаимодействовать с макромолекулами полиамидов, приводя к разрыву химических связей главной цепи. Неорганические соли обычно не оказывают заметного влияния на полиамиды, но некоторые из них могут взаимодействовать с полимером при наличии в нем внутренних напряжений. Как и следовало ожидать, химическая активность полиамидов возрастает с температурой. Воздействие различных веществ на полиамиды может быть либо только физико-хими-ческим (и обычно определяется диффузией жидкости в полимер), иметь чисто химическую природу (взаимодействие реагентов с функциональными группами полимера) или сочетать оба эти механизма. [c.82]

    Исследовано влияние времени и потенциала накопления на висящей ртутной капле, скорости перемешивания, температуры раствора и размера ртутной капли на пик восстановления предварительно адсорбированных органических соединений различных классов [104]. На примере ряда ароматических альдегидов (бензальдегид, дифенилальдегид, терфенилальдегид), кетонов, нитросоединений и других органических веществ показано, что при соблюдении постоянства найденных оптимальных условий накопления наблюдается прямая пропорциональность между высотой пика восстановления и концентрацией деполяризатора. Средняя относительная ошибка определения составляет 4% [105]. Этот прием был применен для количественного определения некоторых триазиновых красителей, а также диме-тилглиоксима, /г-хинондиоксима, порофора и других веществ в стоках предприятий химической промышленности с чувствительностью до 10 —10 М [106]. [c.81]

    Хлористый алюминий, с некоторыми из применений которого в конденсациях органических молекул (с отщеплением галоидово дорода) мы познакомились в предыдущей главе и (отчасти во II и IV) вообще приводит молекулы органических соединений в состояние с более ослабленными связями между углеродом и водородом. Таким образом, действуя на ароматические углеводороды, хлористый алюминий содействует их расщеплению на водородные атомы и ненасыщенные радикалы, из которых последние могут соединиться в молекулу с ббльшим числом ароматических ядер, чем было в начальном продукте. Вследствие благоприятного влияния катализатора эта реакция дегидрогенизации проходит при более низкой температуре, чем вышеуказанные конденсации, например в свинцовой бане. [c.501]

    Приведенные литературные данные о влиянии среды на п цесс жидкофазного окисления в основном относятся к алифа1 ческим органическим соединениям, изученным в ряде случг при относительно умеренных температурах на начальных с диях окислительных превращений. Можно предположить, в случае окисления алкилароматических углеводородов, нап мер окисления л-ксилола до терефталевой кислоты при 18С 260°С, изложенные выше закономерности влияния среды на ] нетику и механизм процесса могут претерпевать изменения [c.32]


Смотреть страницы где упоминается термин Температура, влияние ва вес органических соединений: [c.5]    [c.5]    [c.253]    [c.500]    [c.214]    [c.138]    [c.440]    [c.11]    [c.258]    [c.463]   
Справочник по основной химической промышленности Издание 2 Часть1 (0) -- [ c.83 ]




ПОИСК





Смотрите так же термины и статьи:

Температура органических соединений

Температуры соединений



© 2025 chem21.info Реклама на сайте