Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообменники материалы

    При производстве цемента сухим способом (рис. 27) материал поступает в циклонные теплообменники, где помимо сушки начинается и его декарбонизация. Обычно применяют 3—4 ступени теплообменников. Из теплообменников материал, нагретый до 900° С, поступает в печь с влажностью 3—4%. [c.135]

    Получаемые в процессе переработки исходных материалов растворы сульфатов цветных металлов (никеля, меди, цинка) до настоящего времени упариваются в аппаратах периодического действия (освинцованных баках, снабженных греющими змеевиками). Сейчас осуществляется переход на высокопроизводительные аппараты непрерывного действия. Для этой цели спроектированы сварные выпарные аппараты с выносными трубчатыми теплообменниками, материал которых должен быть коррозионно стойким в упариваемых растворах. [c.62]


    При размещении труб по вершинам треугольника число труб несколько увеличивается, что приводит к увеличению поверхности теплообмена примерно на 10—15%. Материал для теплообменников выбирают в зависимости от технологического режима, характера среды, что отражается в графе исполнения аппарата буквенными обозначениями Ml, М2, М3, М4, Б1, Б2, ВЗ. Трубы теплообменников изготовляют из стали, латуни, алюминиевого сплава, корпус аппарата и распределительные камеры — из двухслойной стали разных марок и сплавов. В случае латунных труб, их длине [c.174]

    За последние годы на ранее построенных и вновь сооружаемых установках АВТ начали использовать укрупненные кожухотрубчатые теплообменники, конденсаторы, холодильники, аппараты воздушного охлаждения, 5-образные, ситчатые, клапанные тарелки, печи вертикального факельного пламени, котлы-утилизаторы, новые комплексные системы автоматизации и регулирования-технологическими процессами (системы старт ), новые агрегаты для ремонтно-монтажных работ и др. Однако еще наблюдаются серьезные недостатки в выборе аппаратов, оборудования и противокоррозионного материала для их изготовления. Многочисленные отечественные установки АВТ еще не модернизированы. На установках действуют малоэффективные аппараты — печи шатрового [c.233]

    Пример 31. Требуется спроектировать теплообменник для системы восстановления растворителя (легкого бензина) с применением парафинового масла в качестве поглощающего материала. Через систему циркулирует 10 м масла в час. В результате поглощения растворителя его объем возрастет приблизи- [c.179]

    Толщина стенок должна соответствовать рабочему давлению пара, а применяемый материал — действующим инструкциям по изготовлению сосудов, работающих под давлением. Для повышенного давления можно делать кольцеобразные теплообменники, ар мированные болтами, по аналогии с укрепленными греющими ру. башками. [c.233]

    При усовершенствовании установки вала следует учитывать также тепловое расширение отдельных частей теплообменника. Ранее эти теплообменники предназначались для формования обрабатываемого материала при одновременном охлаждении его. Однако в них можно также нагревать вязкую жидкость. Коэффициенты теплопередачи были замерены на экспериментальном аппарате (фиг. 150) с диаметром кожуха, равным 75 мм. Испытания прово- [c.239]

    Для получения заготовок деталей теплообменника листовой материал толщиной 1 мм размечают по шаблону и обрезают до заданных размеров на гильотинных ножницах. На полученных заготовках производят отбортовку кромок. Фольгу, предназначенную для изготовления насадки, разрезают на ленту шириной, равной ширине пакета или кратной ей, а затем штампуют по специальной технологии. [c.195]


    Чтобы предотвратить разрушение канализационных сетей, колодцев, камер и других сооружений, необходимо их выполнять из материалов, стойких к коррозионному воздействию агрессивных компонентов сточных вод. Выбор того или иного материала определяется характером агрессивной среды, ее концентрацией, температурой, давлением и т. д. Для транспортировки агрессивных сточных вод можно применять трубы из нержавеющих сталей, стальные гуммированные трубы, фаолитовые, текстолитовые, стеклянные, полиэтиленовые, стальные, футерованные химически стойкими пластмассами, эмалированные и другие трубы. Оборудование для обработки и перекачивания стоков (насосы, теплообменники, разделители, сборники и др.) можно изготавливать пз легированных сталей или из углеродистых сталей с соответствующими антикоррозионными покрытиями (футеровка кислотоупорным кирпичом или плиткой, покрытия из винипласта, свинца, полиэтилена и т. д., лакокрасочные покрытия, гуммирование и др.). [c.256]

    Возврат используется не только в системах с химической реакцией. Так, на мельницу снова поступает недостаточно измельченный материал после отделения зерен заданной величины (стр. 406). Возвращаться в систему может также теплота например, в случае реактора, соединенного с теплообменником, теплота горячих [c.414]

    Нисходящее движение твердых частиц во взвешенном состоянии наблюдается в вертикальных трубах (стояках), предназначенных для транспортировки твердого материала из одной емкости в другую, расположенную ниже первой [157, 158]. В системах жидкость—жидкость режим движения капель во взвешенном слое считается достаточно перспективным как для проведения процессов теплообмена в колонных теплообменниках прямого контакта, предназначенных для опреснения морской воды [159, 160], так и для процессов массообмена в распылительных экстракционных колоннах [161, 162]. [c.95]

    Проектирование химических реакторов—одна из важнейших и труднейших задач, с которыми встречается инженер-химик. Химический реактор, помимо чисто кинетических аспектов, одновременно является и теплообменником и массообменным аппаратом, и ему часто присущи некоторые черты устройств для перемещения потоков и транспорта твердого материала. Приходится нередко обеспечивать контакт между твердой, жидкой и газовой фазами, применять мешалки и другие подобные устройства, а также вести реакцию в условиях высоких температур и давлений. Возникают серьезные проблемы, связанные с контролем процесса. Наконец, требуется самый тщательный экономический анализ, чтобы получить максимум продукции нужного качества с минимальными производственными затратами. [c.9]

    П1 И упаривании агрессивных жидкостей, для которых трудно по-д( брать стойкий конструкционный материал для поверхности теплообмена. Для упаривания термически нестойких веществ находят применение пленочные испарители с падающей пленкой, которые вь[полняются в виде вертикальных кожухотрубчатых теплообменников (рнс. 101). [c.112]

    При разработке аппарата вначале выбирают тип теплообменника, рассчитывают его наиболее характерные размеры, определяют основные и вспомогательные штуцеры и их размеры, разрабатывают вспомогательные устройства и (приспособления и выбирают конструкционный материал. Далее переходят к составлению задания на разработку технического проекта теплообменника. [c.90]

    Для борьбы с коррозией теплообменников внутреннюю или наружную поверхность металлических труб и внутреннюю поверхность кожухов облицовывают стеклом применяют плакировку, сочетающую механическую прочность одного металла с коррозионной стойкостью другого. Так, тонкий слой нержавеющей сталп прокаткой соединяют с листом обычной углеродистой стали. Применяют иногда электролитические или химические покрытия, образующие противокоррозионную пленку на конструкционных материалах. При случае несовместимости прокачиваемой жидкости с материа.1 ами труб используют биметаллические трубы, например из никелевого сплава с одной стороны и алюминиевого — с другой. [c.270]

    Пространство для движения теплоносителей в теплообменнике любого типа выбирают так, чтобы улучшить теплоотдачу того потока, коэффициент теплоотдачи которого меньше. Поэтому жидкость (или газ), расход которой меньше или которая обладает большей вязкостью, рекомендуется направлять в трубное пространство. Через него пропускают также более загрязненные потоки, чтобы облегчить очистку поверхности теплообмена, тепло-носители, находящиеся под избыточным давлением, а также химически активные вещества, так как в этом случае для изготовления корпуса аппарата не требуется дорогого коррозионно-стойкого материала. [c.113]

    В химической технологии применяются теплообменники, изготовленные из самых различных металлов (углеродистых и легированных сталей, меди, титана, тантала и др.), а также из неметаллических материалов, например графита, тефлона и др. Выбор материала диктуется в основном его коррозионной стойкостью и теплопроводностью, причем конструкция теплообменного аппарата существенно зависит от выбранного материала. [c.24]


Рисунок 1.10 - Блочный теплообменник из графита 1 - фафитовые блоки, 2 - вертикальные круглые каналы, 3 - горизонтальные круглые каналы, 4 - боковые переточные камеры, 5 - торцевые крышки Основной отличительной особенностью пластинчатых теплообменных аппаратов от традиционных трубчатых аппаратов является форма поверхности теплообмена и каналов для теплообменивающихся сред. В пластинчатом теплообменном аппарате (рисунок 1.11) поверхность теплообмена представляет собой гофрированные пластины, которые располагают параллельно друг другу таким образом, чтобы между ними оставались щелевидные каналы для рабочих сред. При таком конструктивном решении теплопередающая поверхность может быть выполнена из листового материала небольшой толщины, а каналы для теплооб- Рисунок 1.10 - <a href="/info/534067">Блочный теплообменник</a> из графита 1 - фафитовые блоки, 2 - вертикальные круглые каналы, 3 - горизонтальные круглые каналы, 4 - боковые переточные камеры, 5 - торцевые крышки Основной <a href="/info/686460">отличительной особенностью</a> <a href="/info/320609">пластинчатых теплообменных аппаратов</a> от традиционных <a href="/info/144851">трубчатых аппаратов</a> является <a href="/info/587317">форма поверхности</a> теплообмена и каналов для теплообменивающихся сред. В <a href="/info/320609">пластинчатом теплообменном аппарате</a> (рисунок 1.11) поверхность теплообмена представляет <a href="/info/1795776">собой</a> <a href="/info/1471155">гофрированные пластины</a>, которые располагают параллельно <a href="/info/16133">друг другу</a> <a href="/info/461013">таким образом</a>, чтобы между ними оставались щелевидные каналы для <a href="/info/311364">рабочих сред</a>. При таком <a href="/info/1272017">конструктивном решении</a> <a href="/info/320615">теплопередающая поверхность</a> может быть выполнена из <a href="/info/392450">листового материала</a> небольшой толщины, а каналы для теплооб-
    Рассмотрим объемные, массовые и стоимостные характеристики теплообменника. В. М. Антуфьев [4], впервые введший эти характеристики показал, что площадь поверхности является критерием сопоставления теплообменников в том случае, когда последние скомпонованы из одинаковых труб и отличаются друг от друга лишь взаимным их расположением. При сравнении поверхностей из труб различных формы или материала вместо площади F следует рассматривать объем V, занимаемый аппаратом, и массу поверхности теплообмена М, что особенно существенно для транспортных установок. В тех случаях, когда технологии изготовления поверхностей существенно различны или применены материалы, значительно различающиеся по стоимости, целесообразно в качестве характеристики использовать стоимость поверхности d. [c.38]

    Монография завершается постановкой проблем дальнейшего развития систем оптимального проектирования промышленного, энергетического и транспортного теплообменного оборудования в масштабе отдельных производств, отраслей и страны. Обзор современного состояния расчетов теплообменников в целом и элементов этих расчетов проводится параллельно с изложением основного материала. [c.10]

    Общие свойства меди и ее сплавов. Медь, помимо широкого применения в технике по причине ее высокой электропроводности, используется в химическом машиностроении в качестве конструкционного материала для изготовления разнообразной химической аппаратуры и в особенности теплообменной аппаратуры (выпарные аппараты,теплообменники,конденсаторы, испарители, змеевики и т. п.). Объясняется это высокой теплопроводностью меди и ее сплавов, их благоприятными физико-механическими свойствами при достаточно высокой [c.245]

    Стоимость теплообменников с плавающей головкой в зависимости от поверхности теплообмена и конструкционного материала приведена в табл. 45. Длина труб теплообменника 4,88 мм, рабочее давление [c.111]

    В теплообменниках применяют трубки из тефлона ввиду низкой адгезионной способности этого материала, так как большие потери при теплообмене вызваны отложениями на поверхности. Ряд исследований направлено на создание металлических труб для теплообменников с тефлоновым покрытием. Испытания трубок с внутренним диаметром [c.116]

    Проявления электрохимической коррозии увеличиваются в местах соприкосновения разнородных металлов, там, где нарушена однородность материала в заклепках, сварных швах, в местах, где имеются трещины, рванины, царапины. Особенно сильной электрохимической коррозии подвергаются те участки аппаратуры, в которых конденсируется жидкость днища резервуаров, погружные теплообменники, водоотделители и др Весьма благоприятны условия для коррозии в почве почвенная вода содержит растворы кислот и солен и является хорошим электролитом. [c.172]

    Учитывая некоррозионность теплоносителей, принимаем для теплообменника материал — сталь марки Ст 3, имеющую коэффициент линейного расширения = 12-10 К , и модуль упругости Е = 21,6-10 Па. [c.166]

    Трубный прокат широко применяется в конструкциях печей, теплообменников, технологических трубопроводов в качестве пачрубков аппаратов. В отдельных случаях для изготовления корпусов относительно малых диаметров непосредственно используются сварные фу-бы. Этим определяегся большое значение труб как материала заготовок. [c.26]

    Иногда теплопередача соприкосновением и теплопередача через стенку невозможны. Например, при теплопередаче температура в теплообменнике может быть слищком высокой или обменивающиеся теплотой среды могут оказывать сильное коррозионное воздействие на материал стенки. В этих случаях возникают трудности выбора конструкционного материала с большой термической и коррозионной стойкостью, обладающего одновременно высокой [c.385]

    Антегмит. Это графитовый материал, представляющий собой композицию графита и фенолформальдегиднон смолы. Ван<ное преимущество графитовых материалов по сравнению со всеми-остальными неметаллическими материалами — высокая теплопроводность, дающая возможность применять их для теплообменных элементов. Из пропитанного графита и прессованных материалов на основе графита изготовляют трубы, футеровочные плитки, корпуса насосов и теплообменники различных типов — трубчатые, блочные, пластинчатые и др. [c.25]

    Крепление труб в трубной решетке. Крепление должно быть прочным, плотным и вместе с тем обеспечивать легкую замену поврежденной трубы. Раньше основным способом крепления труб из пластичных материалов была развальцовка. Развальцовку производят с помощью специального инструмента — вальцовки, имеющей вращающиеся ролики, которые во время вращения раздвигаются с помощью конуса и расширяют конец трубы. Конец трубы пластически деформируется и плотно прижимается к стенкам гнезда. Материал решетки долж ен быть тверже материала трубы, чтобы можно было многократно заменять трубы и обеспечивать целостность гнезда. При давлении в теплообменнике свыше 1,6 МПа для увеличения сопротивления вырыванию на поверхности гнезд протачивают канавки, а концы труб разбортовывают. [c.89]

    Основные размеры противоточных переохладителей, применяемых в холодильных системах с ор осительными или кожухотрубными конденсаторами и монтируемых на линиях от конденсатора к регулирующей станции, приведены в табл. 4-8. Противоточный переохла-дитель выполняется в виде секционных теплообменников типа труба в трубе . Материал внутренней и наружной труб — сталь, диаметры, соответственно 35X3,5 и 57X3 мм. [c.172]

    Заводами химического аппаратостроения освоено серийное производство нормализованных теплообменников с очень широким диапазоном применения, благодаря чему к разработке специального технического проекта аппарата прибегают только в исключительных слу-чаях, -Л. --е -логда необходимо использовать новый материал, не стандартизовано сочетание крышек теплообменника, занижены диаметры штуцеров или недостает нужного штуцера, изменяется число перегородок, не стандартизовано расположение штуцеров и, наконец, при заказе теплообменника за рубежом. [c.89]

    Выбор материала теплообменников. В настоящее время освоен серийный выпуск кожухотрубчатых теплообменников из стали марки Х18Н10Т. [c.96]

    Относительная сложность, а часто и новизна реакционных аппаратов являются причиной того, что, как правило, они полностью разрабатываются специализированными организациями, имеющими экспериментальную базу. В проектном институте разрабатываются лишь простейшие реакторы, причем порядок их эскизного конструирования (определение штуцеров, основных размеров, выбор материала и т. д.) и оформления задания на разработку технического проекта мало отличается от принятого при конструировании емкостей, теплообменников и колонн и состоит из тех же этапов. Как и в предыдущих случаях, следует стремиться к максимальному использованию стандартных узлов и деталей, выбираемых по каталогам, нормалям и ГОСТ. Это позволяет ограничиться рассмотрением различных устройств, характерных для каледой из перечисленных групп реакционных аппаратов. [c.115]

    Все трубопроводы, соединяющие теплообменники между собой или с другими аппаратами, по которым транспортируются жидкости или гaзьf с температурой, отличающейся от температуры материала трубопровода при монтаже больше чем на 50—60 °С, должны быть проверены на самокомпенсацию температурных деформаций (см. стр. 207). [c.191]

    Для работы в высокоагрессивных средах (серной и соляной кислот, треххлористого алюминия и др.) в процессах вынарки, конденсации и охлаждения под давлением до 3 ат применяют графитовые теплообменники поверхностью 1,6—240 с прокладками из политетрафторэтилена (тефлона). Такие теплообменники успешно эксплуатируются в СССР на фабриках искусственного волокна, а также на нефтехимических заводах. Применяют теплообменные аппараты из углеграфитового материала — антегмита. [c.270]

    Пример 5. Определить возможность использования теплообменника с неподвижными трубными решетками типа ТН (без компенсатора) по следующим данным Од = 0,6 м бк = 5,0 мм, н = 25 X 2 мм, п 240, Ртр = 0,6 МПа, рмтр = 1,0 МПа, /тр = 70 °С, (к= 170 °С. Прибавка на коррозию Ск = 1,0 мм, материал корпуса и труб — углеродистая сталь (а = 240 МН/м , = 250 МН/м2, дк = 130 МН/м , а = 137 МН/м = = 1.84- МН/м тр == 1,94- 10= МН/м , атр = а,( = 11,0 х X 10- 1/Х). [c.82]

    Подбор аппаратов АХМ. Подэор и поверочный расчет основных теплообменных аппаратов (испарителя, конденсатора, дефлегматора и теплообменников для регенерации тепла) проводится по общей схеме, представленной в гл. II. При )асчете абсорбера, выпарного элемента генератора и ректификацион-рой колонны следует использовгть материал глав III, V—VII. Примеры расчета этих аппаратов даны в литературе [5]. [c.191]

    Алитирование хромистых сталей позволяет значительно расширить область их применения при повышенных температурах в агрессивных средах, содержащих сероводород. Коррозионная стойкость алитированных 3%-ных хромистых сталей в чистом сероводороде при 500—550 °С выше коррозионной стойкости стали 12Х18Н10Т. Для изготовления трубчатых змеевиков печей, а также для коммуникационных трубопроводов и пучков трубчатых теплообменников в США и некоторых других странах на установках гидроочисткн нефтепродуктов используют в промышленном или опытном масштабе алитированные трубы из стали 15Х5М взамен труб из дорогой стали типа 18—8. Опыт подтверждает целесообразность такой замены материала. [c.27]

    Повреждения от температурных воздействий на материал аппарата появляются при изменениях температуры в жестко закрепленных конструкциях, прямолинейных участках трубопроводов, конструкциях из материалов с различными коэффициентами линейного расширения или выполненных из одинакового материала, но находящихся при различных температурных воздействиях (кожух и трубки трубчатых теплообменников). [c.83]

    Коррозия. Дополнительные источники коррозии — кислые осадки ]1а поверхности металла (гальваническое действие), эрозионный износ поверхности металлов, а также слабый контроль за кислотностью раствора. Крупной проблемой является коррозия от напряженности металла, которая обычно возникает при неудачном выборе материала для изготовления аппаратуры. Если установка плохо запроектирована, то проблему коррозии не решает даже добавление в раствор соответствующих ингибиторов, хотя в этом часто возникает необходимость. Для изготовления аппаратуры можно применять обычную углеродистую сталь при условии, что на установке будет проводиться строгий контроль. В случае повышенной коррозии рекомендуется применять сталь марок 304 и 316. Имеются сообщения об успешном применении для изготовления теплообменников стали марки 7072, плакированной алюминием. Испытывались также стали, плакированные другими металлами и покрытые пластиком. О результатах применения пластикового покрытия нет единого мнения. Имеются сообщения об успешном применении и отрицательные выводы, хотя дело кажется довольно простым изолировать металл пластиком и принять меры к исключению течи (проколов) в этой изоляции. Добавка 7 г КазСОд на 1 л раствора иногда способствует уменьшению коррозии. Для поглощения кислорода в раствор добавляется гидразин. [c.278]

    Новый конструкционный материал поробонд для изготовления теплообменной аппаратуры, разработанный в США фирмой ОИп Brass Div., представляет собой пористую среду из соединенных мелких частиц, связанных с теплопередающей поверхностью (например мелкие медные частицы, соединенные с медными и стальными трубками). Разветвленная поверхность способствует получению высоких коэффициентов теплопередачи. Так, в масляных холодильниках, выполненных из этого материала, получены коэффициенты теплопередачи, которые в 6—8 раз больше, чем в обычных кожухотрубных теплообменниках. Теплообменники, выполненные из этого материала, значительно компактнее, легче и дешевле обычных, кожухотрубных [126]. [c.116]

    Цифра 25 указывает расчетное давление корпуса теплообменника, кгс/см М4 указывает на материал, из которого выполнены основные детали теплообменника. Данные взяты из специальных таблиц. Так, М4 означает, что корпус и распределительная камера выполнены из СТЗ, стали 20, стали 16ГС трубы — из стали Х5М трубные решетки — из стали Х5М с термообработкой перегородка — из стали Х5М шпильки плавающей головки— из стали 25Х2МФА. В знаменателе цифра 25 указывает наружный диаметр трубки в мм буква Г обозначает, что труба гладкая цифра 9 указывает на длину труб в м буква К указывает на квадратный способ расположения труб цифра 4 означает, что данный теплообменник четырехходовой. [c.50]


Смотреть страницы где упоминается термин Теплообменники материалы: [c.759]    [c.127]    [c.4]    [c.136]    [c.331]    [c.209]    [c.254]    [c.142]    [c.29]   
Основы технологического проектирования производств органического синтеза (1970) -- [ c.172 ]




ПОИСК







© 2025 chem21.info Реклама на сайте