Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азеотропные третьего компонента

    В экстрактивной же ректификации в отличие от азеотропной третий компонент — растворитель — является практически неле- [c.268]

    Проведенное рассмотрение имело целью выяснить основную особенность ректификации бинарных гомогенных азеотропов с помощью третьего компонента, заключающуюся в том, что разделительный агент, в свою очередь, образует гомоазеотроп с одним пз исходных компонентов. Так, получение практически чистого компонента а сопровождается появлением нового гомоазеотропа Е , который, в свою очередь, необходимо подвергнуть разделению. Примером может служить выделение нормального парафинового углеводорода из смеси с ароматическим с помощью разделительного агента — метанола. Ароматика отводится с низа колонны, а дистиллят является положительным азеотроном алкана и метанола. Обработка последнего водой, растворяющей метанол, высвобождает алкан, он всплывает кверху и таким образом выделяется из азеотропной смеси. [c.332]


    На рис. VII.11 представлена типичная схема установки для разделения водного раствора уксусной кислоты на практически чистые составляющие с помощью азеотропной ректификации с третьим компонентом. Как показывает практика, приходится работать с некоторым избытком третьего компонента, который отходит вместе с уксусной кислотой с низа главной колонны и должен быть отделен и возвращен в процесс. [c.335]

    Процесс азеотропной перегонки с третьим компонентом. [c.149]

    На фиг. 51 представлен ход азеотропической перегонки для случая разделения бинарного азеотропа с помощью третьего компонента, образующего с компонентами системы тройной азеотроп, кипящий при наинизшей в системе температуре. Азеотропную перегонку вообще удобно вести в периодически действующей ректификационной установке, так как все необходимое количество третьего све.чзо,- ) компонента может [c.150]

    При азеотропной перегонке смеси этанол—вода с избытком третьего компонента—бензола против теоретически требуемого минимума его, первый дестиллат, определяемый фигуративной точкой содержит 7,5% воды, 18,5% этанола и 74% бензола, а второй дестиллат, определяемый фигуративной точкой Е, состоит на одну треть из спирта. Из первого дестиллата бензол извлекается промывкой водой, а разбавленная спирто-водная смесь концентрируется, выделяя практически чистый спирт до азеотропа, отвечающего точке С, и вновь идет в процесс. [c.151]

    На рис. VI.15 представлена типичная схема установки для разделения водного раствора уксусной кислоты на практически чистые составляющие при помощи азеотропной ректификации с третьим компонентом. Как показывает практика работы, при- [c.295]

    Азеотропная ректификация отличается применением третьего компонента повышенной летучести, способного к образованию с одним из компонентов исходной смеси второго азеотропа с более низкой температурой кипения, чем исходный. Для рассматриваемого ниже примера промышленного извлечения толуола в качестве разделяющего агента принят водный раствор метилэтилкетона (МЭК). На такой установке чистота выделенного толуола достигает 99% и более. На других установках для тех же целей служит метанол. Технологическая схема процесса ректификации представлена на рис. 202. Для полного отделения толуола от неароматических углеводородов в колонну необходимо подавать в 2,8—3 раза больше МЭК, чем содержится неароматических углеводородов в исходной смеси. Содержание воды в МЭК не превышает 10%. Основная его масса отводится с головным продуктом колонны 1 и экстрагируется водой в колонне 2. Из водного раствора МЭК легко извлекается обычной ректификацией. Получаемый сверху регенерационной колонны 3 МЭК содержит около 10% воды и является разделяющим [c.327]


    Существует возможность отделения нафталина от тионафтена путем азеотропной ректификации с третьим компонентом [41]. [c.312]

    Перспективным методом разделения бензола и насыщенных углеводородов, хорошо вписывающимся в существующую схему производства, является фракционирование в присутствии третьего компонента — азеотропная или экстрактивная ректификация. Наи- [c.235]

    При выборе третьего компонента для азеотропной перегонки необходимо учитывать следующее 1) после его добавления температура кипения смеси третьего компонента с неароматическими углеводородами (новой азеотропной смеси) должна значительно отличаться от температуры кипения выделяемого ароматического углеводорода или его азеотропной смеси с третьим компонентом 2) желательно, чтобы новая образующаяся азеотропная смесь содержала максимальное количество неароматических углеводородов 3) третий компонент должен иметь низкую теплоту испарения, чтобы расход тепла на отгон был минимальным он должен также легко регенерироваться для дальнейшего использования в процессе, например путем водной промывки, разделения фаз при охлаждении и др., и быть химически инертным — не вступать в реакцию с разделяемыми углеводородами, не корродировать аппаратуру, быть термически стабильным, нетоксичным и доступным в промышленном масштабе. [c.41]

    Третий компонент, образующий азеотропные смеси только с одним из компонентов разделяемой смеси, называется селективным неселективный растворитель образует азеотропные смеси с обоими компонентами разделяемой смеси, характеризующиеся различными температурами кипения. Так, при азеотропном разделении метилциклогексана и толуола метилэтилкетон является селективным компонентом, а метанол — неселективным [19, 20]. Применение неселективного третьего компонента требует, как правило, большей погоноразделительной способности колонны и тщательного контроля количества добавляемого компонента. [c.41]

    Существует возможность отделения нафталина от тионафтена азеотропной ректификацией с третьим компонентом [108]. [c.272]

    Третий способ разделения гомоазеотропной смеси состоит в добавлении к системе специально подобранного третьего компонента (так называемого разделяющего агента или отмыва-теля), способствующего либо расслоению азеотропа, либо образованию нового, легче разделяемого азеотропа с одним или с обоими компонентами исходной смеси, т. е. используется так называемая азеотропная ректификация. [c.360]

    В зависимости от летучести самого разделяющего агента С ректификация в присутствии третьего компонента подразделяется на азеотропную и экстрактивную. [c.363]

    При типичной азеотропной перегонке к бинарной смеси, компоненты которой кипят при близких температурах, добавляют третий компонент. Этот компонент образует с одним или обоими компонентами бинарной смеси азеотропную смесь с минимальной точкой кипения, увеличивая тем самым разницу между температурами кипения перегоняющихся фракций. Таким образом, в результате добавления третьего компонента изменяются относительные летучести двух первоначальных составных частей смеси. [c.35]

    Спирты обычно отгоняют от разбавленного сернокислотного раствора и затем концентрируют ректификацией, в результате чего во всех случаях получают азеотропные смеси с водой. Для обезвоживания спиртов азеотропные смеси перегоняют в присутствии третьего компонента, который [c.141]

    На рис. ХП-30 показано влияние добавки разделяющего компонента на изменение относительной летучести компонентов бинарной смеси. Пунктиром изображены кривые равновесия, получаемые при разделении смеси близкокипящих компонентов (рис. ХП-30, а) и азеотропной смеси (рис. ХП-30, б) в присутствии третьего компонента. Из диаграммы у—х видно, что вследствие резкого повышения относительной летучести процесс разделения значительно облегчается и может быть осуществлен при меньшем числе ступеней разделения. [c.512]

    Разделение азеотропной смеси путем добавления третьего компонента. Абсолютный спирт можно получить перегонкой азеотропной смеси с добавкой бензола. Образующаяся двухфазная система кипит при другой температуре (64,9 °С р= 1,013-10 Па). После отгонки бензольного слоя остаток представляет собой абсолютный спирт. [c.103]

    Разделение азеотропных смесей на составляющие нх компоненты можно осуществить перегонкой после введения третьего компонента. Например, азеотропную смесь этиловый спирт — вода можно разделить перегонкой после прибавления к ней бензола. [c.242]

    Переходной ступенью от теории ректификации бинарных 1)астворов к теории многокомпонентных систем является рассмотрение тройных смесей, часто встречающихся в нефтехимической технологии. При наличии данных но парожидкостному равновесию состояние тройных смесей поддается наглядному графическому представлению в системе трилинейных координат, а принятие некоторых упрощающих допущений позволяет проводить удобный графический расчет ректификации таких смесей. Исследование же процесса разделения тройных систем является основой для ностроения теории процессов азеотропной и экстрактивной ректификации, в которых разделение гомогенного в жидкой фазе азеотропа пли трудно разделимого бинарного раствора осуществляется путем добавления к системе третьего компонента. [c.247]


    Обычно под азеотропной ректификацией понимают разделение пепдеальных растворов путем добавления третьего компонента для образования азеотропной смеси (отводимой в качестве дистиллята плп остатка), из которой уже другими средствами мон<ет быть выделен практически чистый компонент. Одпако представляется более целесообразным вкладывать в этот термин более широкий смысл, понимать под ним любой процесс ректификации, в котором так или иначе участвуют азеотронные смеси. [c.328]

    Целью экстрактивной ректификации, которая очень близка к азеотропной, является разделение систем близкокинящих веществ, различающихся по своей молекулярной структуре, путем введения в укрепляющую секцию колонны надлежаще иодоб"ранного жидкого разделительного агента — растворителя. Однако здесь третий компонент (растворитель) не образует азеотропа ни с одним из компонентов исходной смеси, характеризуется низкой летучестью, почти не испаряется в колонне и отводится не с верхним, а с нижним продуктом. Добавление такого разделительного агента к смесям близкокипящих веществ, относительная летучесть которых очень мала, приводит к резкому увеличе- [c.328]

    Выбор разделительного агента для азеотропной и экстрактивной ректификации представляет сложную задачу и обычно основывается как на теоретических, так и на опытным путем установленных положениях. Так, третий компонент, добавляемый для облегчения нроцесса разделения, в случае азеотропной ректификации должен отводиться с верхним продуктом, а в случае экстрактивной — с нижним, быть термически устойчивым, доступным, недорогим, нетоксичным и некорродирующим, обладать полной растворимостью с компонентгпии исходной смеси и легко отделяться от компонентов, с которыми образует азеотропы или простые растворы. [c.329]

    Другим классическим примером азеотропной ректификации является разделение системы этанол — вода на практически чистые компоненты в присутствии третьего компонента — бензола. Схема трехколонной установки, предназначенной для этой цели, приведена на рис. VII.12. [c.336]

    Пусть, например, требуется выделить толуол из смеси с алка-нами, имеющими практически ту же точку кипения. Разделение подобной системы в обычной колонне практически неосуществимо, поэтому следует прибегнуть к азеотропной ректификации в присутствии третьего компонента. В качестве последнего можно использовать метилэтилкетоп. Полностью взаимно растворимый со всеми компонентами смеси кетон образует с алканами низкокипящий годюазеотроп с точкой кипения, заметно более низкой, чем точка кипения толуола, что позволяет получить сверху колонны смесь азеотропов, а снизу — толуол. Если в систему подается избыток кетона, то нижний продукт представляет собой легко поддающуюся разделению смесь толуола с метилэтилке-тоном. [c.338]

    Обычно из смеси в первую очередь отгоняют наиболее летучую синильную кислоту в ректификационной колонне 10 с кипятильником и дефлегматором при небольшом вакууме (чтобы избежать попадания высокотоксичной H N в атмосферу). Из кубовой жидкости в колонне II с водой в качестве третьего компонента отгоняют более летучую азеотропную смесь акрилонитрила, оставляя в кубе водный раствор ацетонитрила с примесью менее летучих соединений (циангидрины формальдегида и ацетальдегида, образовавшиеся из этих альдегидов и H N). Из раствора затем выделяют ацетонитрил (на схеме не показано). Дистиллят разделяют в сепараторе J2 на водный и органический слои, возвращая воду в ко-лмшу II. [c.426]

    Необходимо также учитывать, что в случае азеотропной ректификации тепло расходуется на нагрев и испарение разделяющего агента, тогда 1сак нри экстрактивной ректификации тепло расходуется только на нагрев третьего компонента. [c.166]

    Для азеотропной смеси коэффициент относительной летучести а = 1, так как концентрации каждого из компонентов в жидкой (хх) и паровой (у у) фазах одинаковы (рис. 29). Азеотропную смесь можно разрушить, добавляя к ней третий компонент, который образует азеотропную смесь с одним из компонентов разделяемой смеси. Нанример, толуол можно выделить из катализата риформинга добавлением метанола, который образует азеотропную смесь с неароматическими компонентами катализата. Последовательно двукратно добавляя в разделяемую смесь метанол, удается получить толуол чистотой свыше 99%. Отогнавшийся вместе с парафино-нафтеновой частью катализата метанол легко отделяется водной промывкой конденсата, отстаиванием водного раствора метанола и последующей регенерацией последнего отгонкой от воды. Метанол используют также для выделения из катализатов риформинга технического ксилола (смеси изомеров ксилола и этилбензола — углеводородов С Ню)- [c.49]

    Азеотропную перегонку этой смеси нужно проводить на колонке с хорошим погоноразделением (около 20 теоретических тарелок) или в две ступени сначала перегнать исходную смесь, а затем остаток первой разгонки с добавлением дополнительного количества уводителя (третьего компонента). О чистоте разделения можно судить по показателям преломления, которые очень различны для ароматических, неароматических углеводородов и метанола для толуола 1,4969 для бензина (деароматизирован-ного) в среднем 1,4000—1,4300 для метанола 1,3286. Характерна также высокая плотность ароматических углеводородов. [c.50]

    При производстве ксилолов как из каменноугольного, так и из нефтяного сырья первоначально получают сложную смесь продуктов, в которой кроме ксилолов присутствуют ароматические, циклоалкановые и парафиновые углеводороды. На первой стадии выделяют смесь, состоящую из трех изомеров ксилола и этилбензола,—технический ксилол. При переработке каменноугольного сырого бензола, содержащего очень мало парафиновых и циклоалкановых углеводородов, технический ксилол выделяют простой ректификацией. Из продуктов же переработки нефти, обладающих сложным компонентным составом, ксилольную фракцию выделяют ректификацией в присутствии третьего компонента (экстрактивная или азеотропная ректификация) или жидкостной экстракцией. Про- [c.247]

    Закон Рауля, являющийся одним из основных в теории перегонки и ректификации, приложим далеко не ко всем растворам. Существуют так называемые азеотропные смеси, образующие при известном составе нераздельно кипящую фракцию, перегоняющуюся при постоянной температуре, которая мо-жет быть или более высокой или более низкой, чем температура кипения компонентов. Например, бензол <т. кип. 80,2° С) и циклогексан (т. кип. 80,75° С) образуют азеотропную смесь с содержанием 55 /о бензола и температурой кипения 77,5° С. Разделить азеотропные смеси перегонкой и ректификацией невозможно, так как при известной температуре будет кипеть нераздельно кипящая смесь. Чтобы разделить азеотропную смесь, приходится прибегать или к изменению температуры перегонки путем изменения внешнего давления или прибавлением третьего компонента (при изменении давления паров меняется состав азеотропной смеси), или использовать различную растворимость или различие температур застывания компонентов, входящих в азеотропную смесь. При обычной перегонке нефти, когда получаются фракции, кипящие в широких интервалах температур, наличием азеотропных смесей можно пренебречь и считать, что нефть представляет идеальный раствор, следующий закону Рауля. С особенностями азеотропных растворов приходится сталкиваться при выделении из легких фракций нефти отдельных индивидуальных углеводородов, особенно ароматических. Например для правильного распределения метановых углеводородов по двухградусньш фракциям при тщательной ректификации бензина оказалось необходимым удалить предварительно из бензмна ароматические углеводороды. При перего нке бензинов бензол (т. кип. 80,2° С) концентрируется во фракциях, кипящих. при 71—75° С, а толуол (т. кип. 110,6° С) концентрируется во фракции с температурой кипения ЮГ С. [c.173]

    Азеотропная перегонка отличается повышенной летучестью третьего компонента и тем, что он образует азео-тропную смесь с одним или ьесколькими компонентами разделяемою цродукта. Существует ряд схем 1 азеотропной перегонки, завпсянщх от смешиваемости растворителя с разделяемыми компонентами. Наиболее эффективным азеотропным агентом для [c.395]

    Метанол-сьфец, получаемый в aiperare синтеза, содержит незна щтельную долю примесей (порядка 0.4 - 6%), в то время как метанол высшего качества должен содержать не более О 05% примесей Хотя общее содержание примесей невелико, отделение их от метанола сопряжено со значительными трудностями. При определенных концентрациях некоторые из присутствующих примесей могут образовывать с метанолом азеотропные смеси, причем возможно образование и тройных смесей метанол вода - третий компонент. [c.59]


Смотреть страницы где упоминается термин Азеотропные третьего компонента: [c.268]    [c.19]    [c.155]    [c.213]    [c.395]    [c.13]    [c.50]    [c.178]    [c.58]    [c.40]    [c.507]    [c.212]    [c.395]    [c.230]    [c.393]    [c.113]   
Химическая термодинамика (1950) -- [ c.36 , c.666 ]




ПОИСК





Смотрите так же термины и статьи:

Третий

Третий компонент



© 2025 chem21.info Реклама на сайте