Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гистон комплекс с ДНК

    Методы выделения нуклеиновых кислот. При изучении химического состава и строения нуклеиновых кислот перед исследователем всегда стоит задача выделения их из биологических объектов. В главе 2 было указано, что нуклеиновые кислоты являются составной частью сложных белков — нуклеопротеинов, содержащихся во всех клетках животных, бактерий, вирусов, растений. Нуклеиновые кислоты обладают сильно выраженными кислыми свойствами (обусловлены остатками ортофосфорной кислоты в их составе) и при физиологических значениях pH несут отрицательный заряд. Этим объясняется одно из важных свойств нуклеиновых кислот—способность к взаимодействию по типу ионной связи с основными белками (гистонами), ионами металлов (преимущественно с М "), а также с полиаминами (спермин, спермидин) и путресцином. Поэтому для вьщеления нуклеиновых кислот из комплексов с белками необходимо прежде всего разрушить эти сильные и многочисленные электростатические связи между положительно заряженными молекулами белков и отрицательно заряженными молекулами нуклеиновых кислот. Для этого измельченный путем [c.96]


    Взаимодействие ДНК с гистонами происходит главным образом путем образования ионных связей отрицательно заряженных фосфатов с паюжительно заряженными аминокислотными остатками гистонов. Поэто.му комплексы ДНК с гистонами легко диссоциируют при высокой концентрации соли, например в 1,5— 2 М аС1. В то же время центральные гидрофобные участки гистонов взаимодействуют между собой. [c.235]

    Комнактизация ДНК определяется в значительной мере ее взаимодействием с основными белками гистонами. Комплексы ДНК с гистонами нерастворимы при физиологических концентрациях солей. Для растворения хроматина необходимо либо снижение ионной силы до 0,001—0,01, либо, наоборот, использование концентрированных солевых растворов 1 М). В последнем случае, однако, солевые связи между ДНК и гистонами разрушаются, и ДНП диссоциирует на составные части. [c.84]

    Один из этих подходов состоит в локализации ковалентных сшивок между нуклеосомиыми гистонами и ДНК. Принцип локализации заключается в том, что сшитые комплексы белков с ДНК разделяют в двумерных гель-электрофорезах, причем после электрофореза первого направления в геле расщепляют белковый или нуклеиновый компонент комплексов и разделяют во втором направлении только ДНК или только белки соответственно. Таким образом была получена карта линейного расположения гистонов на ДНК (рис. 125). Гистоны НЗ, Н4 располагаются в центре нук-леосомной ДНК, в то время как гистоны Н2А, Н2В локализованы на периферии. Гистон НЗ взаимодействует с центральным и концевым участками нуклеосомной ДНК. Хотя эти участки на развернутой ДНК расположены далеко друг от друга, они сближаются на свернутой в нуклеосому ДНК и, видимо, с ними взаимодействует одна и та же молекула гистона НЗ. На этой же карте видно, что не вся ДНК сплошь покрыта гистонами, а есть свободные от взаимодействия сегменты, например первые 20 нуклеотидов от 5 -концов обеих цепей нуклеосомной ДНК и участки, расположенные на расстоянии около 120 нуклеотидов от 5 -концов. Внутри нуклеосомы гистоны находятся в тесном контакте друг с другом, о чем свидетельствует образование почти всех возможных [c.240]

    Белковый стержень представляет собой комплекс апо-лярных сегментов четырех указанных в тексте гистонов. Участки гистонов, обладающие основными свойствами, образуют комплекс с ДНК, располагающейся на поверхности нуклео-сомы. Гистон Н1, расположенный между нуклеосомами, может играть роль агента, образующего поперечные связи либо между нуклеосомами одной н той же цепи, либо между нуклеосомами разных цепей. Шаг спирали ДНК не обязательно должен быть постоянным при среднем диаметре нуклеосомы около 10 нм он равен 5,5 нм. [c.304]


    Изменение шага спирали ДНК вызывают также ионы металлов и некоторые белки, в том числе гистоны [144]. Изменение шага спирали ДНК в комплексах с АК и актиномицином, однако, значительно больше, что не вызывает удивления, так как для упаковки массивного органического катиона необходимы дополнительные геометрические условия. Приводим формулы некоторых лигандов [c.529]

    Гистоны - представляют собой положительно заряженные (основные) белки, входящие в состав хромосом в комплексе с ДНК (обнаружены также у архебактерий). [c.42]

    ДНК образует комплекс с гистонами, по структуре напоминающий нитку жемчуга (цепь из нуклеосом). [c.522]

    ДНК прокариот построена так же, как и эукариот (рис. 16). Молекула ДНК несет множество отрицательных зарядов, поскольку каждый фосфатный остаток содержит ионизированную гидроксильную группу. У эукариот отрицательные заряды нейтрализуются образованием комплекса ДНК с основными белками — ги-стонами. В клетках подавляющего больщинства прокариот не обнаружено гистонов, поэтому нейтрализация зарядов осуществляется взаимодействием ДНК с полиаминами (спермином и спер-мидином), а также с ионами М . В последнее время у некоторых архебактерий и цианобактерий обнаружены гистоны и гистоно-подобные белки, связанные с ДНК. Содержание пар оснований А+Т и Г+ Ц в молекуле ДНК является постоянным для данного вида организма и служит важным диагностическим признаком. У прокариот молярная доля ГЦ в ДНК колеблется в очень широких пределах от 23 до 75 %. [c.57]

    М Na2HP04. Если ДНК с помощью 1 М Na2HP04 элюировали после второй из упомянутых промывок оксиапатита, то она выходила в комплексе с прочно связанными с ней НБХ. Интересно, что аминокислотный состав этих НБХ необычен для основной пх массы остатки кислых аминокислот преобладают над остатками основных. Значит, прочная связь этой фракции НБХ с ДНК носит неионный характер (поэтому их не снимает 3 М Na l). Предполагалось, что такие белки связаны в малой канавке ДНК, свободной от гистонов. Число их невелико — электрофорез выявляет шесть главных белков с молекулярными массами 22, 28, 32, 56, 66 и 71 тыс. Дальтон. [c.236]

    Какие же другие функции кроме нейтрализации зарядов ДНК выполняют гистоны Первоначально считали, что эти белки могут играть, роль репрессоров генов аналогично тому, как это происходит у бактерий. Однако экспериментального подтверждения это предположение не получило. Гистоны, по-видимому, образуют своеобразный комплекс с нитями ДНК. Сравнительно недавно с помощью электронного микроскопа были получены микрофотографии, на которых видно, что хрома-типовые волокна имеют регулярно повторяющееся строение, напоминая нитки бус. Диаметр бусинки (или у-телец, или нуклеосом) составляет 7—10 нм, а длина свободной нитки между бусами равна 2—14 нм. (рис. 15-35] [290—294]. Содержание ДНК в бусинках велико. Данные, полученные методом дифракции нейтронов, свидетельствуют о том, что в у-частицах нить ДНК намотана вокруг гистонового олигомера-(рис. 15-36) [295]. Гистоны Н2а, Н2в, НЗ и Н4 обнаруживаются почти в одинаковом количестве — на каждые 100 пар оснований в ДНК приходится по одной молекуле каждого из гистонов. В растворе был получен октамер, содержащий по две субъединицы гистонов каждого типа [296]. [c.302]

    П. являются, напр., комплексы ДНК, белков-гистонов с ДНК, комплексы синтетич. линейных полюлектролитов с белками и с мицеллярными ПАВ. П. используют как структурообразователи дисперсных систем, в т. ч. для грунтов и почв, эффективные ср-ва для борьбы с водной и ветровой эрозией почв, как полимерные биосовместимые материалы в медицине, а также как носители ферментов и при создании диагностич. систем в биологии и биотехнологии. Многие П.-комплексообразующие в-ва, в связи с чем они м.б. использованы для извлечения и концентрирования ионов переходных металлов из разб. водных р-ров. [c.14]

    У эукариот ДНК сосредогочена в четко организованном ядре, а также в митохондриях и хлоропласта X. Ядерная ДНК соединена с основными белками (гистонами) нековалентными связями. Комплекс ДНК с белками называется хроматином и представляет основу генетического материала хромосом. [c.43]

    Гистоны проявляют высокую специфичность при взаимодействии друг с другом. При смешивании в растворе наиболее специфичные комплексы возникают при взаимодействии гистонов НЗ и Н4 с образованием тетрамеров, состоящих из двух молекул каждого из этих гистонов. Гистоны Н2А и Н2В при взаимодействии образуют высокоспецифичные димеры. При повышении концентрации соли нуклеосомы диссоциируют сначала происходит отщепление одного димера Н2А-Н2В, затем второго такого димера и в последнюю очередь диссоциация от ДНК гистонового тетрамера (НЗ—Н4)з. При понижении ионной силы порядок реассоциации обратный и в конце образуется реконструированная нуклеосома. Реконструкция нуклеосом облегчается в присутствии полианионов, в частности белков, содержащих много сгруппированных в одном месте кислых аминокислот. Реконструкцию нуклеосомы можно проводить не только из ДНК и отдельно взятых димеров и тетрамеров, но также из ДНК и свободных гистонов. Очевидно, структура нуклеосомы в значительной степени определяется гистон-гистоновыми взаимодействиями и структурой гистонового октамера. Так, гистоновый октамер, реконструированный при высокой концентрации соли из гистонов в отсутствии ДНК, по многим свойствам сходен с октамером в составе нуклеосомы. Сборка гистонового октамера происходит за счет взаимодействий центральных гидрофобных сегментов молекул гистонов между собой. Удаление Ы-концевых участков гистонов с помощью мягкой обработки трипсином не препятствует сборке октамера и даже образованию нуклеосом. [c.241]


    Гистоны. Гистоны являются основными белками (менее щелочными, чем протамины), входящими в состав соматических клеток. У высших организмов нуклеогистоны составляют основной компонент хромосом. Существует несколько типов гистонов. Их молекулярный вес лежит в пределах от 10 000 до 20 000. По-видимому, гистон имеет свою собственную вторичную структуру. Поскольку ДНК в комплексе с гистоном не может служить затравкой при синтезе РНК, было высказано предположение, 1то гистоны каким-то образом регулируют активность гена. Изучение протаминов и гистонов находится еще в самой начальной стадии. [c.358]

    Взаимодействия белок-нуклеиновая кислота в хромосомах клеток эукариот сильнее. В хромосомах ДНК образует комплексы с пятью классами гистонов [23, 24]. Все гистоны — сильно основные белки Н1 обогащен лизином по сравнению с аргинином, НЗ и Н4 богаты аргинином, а в Н2А и Н2В соотношение между лизином и аргинином промежуточное. Последовательности аргинин-бо-гатых гистонов очень консервативны. Гистоны Н4 из тимуса теленка и проростков гороха различаются всего на две из 102 аминокислот, а гистон НЗ из тимуса теленка и карпа—одним из 135 остатков. Л -концевые участки Н2А, Н2В, НЗ и Н4 намного основ-нее С-концевых. Последние содержат несколько аминокислотных остатков с неполярными боковыми радикалами. Эти четыре гн-стона сильно взаимодействуют друг с другом, возможно С-конце- [c.568]

    А. Ф. Половянюк и В. Г. Конарев показали, что максимум поглощения фельгеновской реакции для нуклеогистона относительно максимума для свободной ДНК сдвинут от 560 к 540 ммк. В присутствии гистонов усиливается поглощение комплекса ДНК-фуксинсернистая кислота в сине-фиолетовой области спектра (рис. 18). [c.143]

    В ходе развития клетки конформации гистонов и НГБ и их ДНК-комплексов изменяются и геном испытывает функциональные изменения, становясь более или менее доступным действию регуляторных белков цитоплазмы. На гигантских хромосомах двукрылых насекомых на определенной стадии развития появляются пуффы — вздутые участки, являющиеся локусами наиболее интенсивного синтеза РНК. В этих участках происходят химические и конформационные изменения гистонов, что и обеспечивает изменение функциональности соответствующих генов. Но-видимому, в пуффах гистоны слабее связаны с ДНК, они более доступны действию протеаз и легче отделяются. Соответственно в пуффах гистоны не мешают работе РНК-полимеразы. В нормальных условиях гистоны препятствуют транскрипции. [c.296]

    Нуклеиновые кислоты, подобно белкам, представляют собой высокомолекулярные соединения. Самые большие из всех известных макромолекул встречаются именно среди нуклеиновых кислот. Есть веские основания полагать, что у некоторых микроорганизмов вся их дезоксирибонуклеиновая кислота (ДНК) представлена, по существу, одной-единственной молекулой с молекулярным весом порядка 10 —10 и даже больше. Нуклеиновые кислоты, как показывает само их название, обладают сильно выраженными кислотными свойствами и при физиологических значениях pH несут отрицательный заряд высокой плотности. Вследствие этого они легко взаимодействуют в клетке с различного рода катионами, чаще всего с основными белками (такими, например, как гистоны и гистоноподобные комплексы), и с ионами щелочноземельных, металлов, особенно с а также [c.121]

    ДНК эукариотических хромосом находится в комплексе с равным по весу количеством гистонов. Как уже было отмечено, примерно каждые 200 п. о. ДНК образуют суперспираль, накрученную на октамер гистонов Н2А, Н2В, НЗ и Н4. Такая структурная единица [c.410]

    Гистоны найдены в хроматине всех соматических эукариотических клеток, но ни разу не были обнаружены у прокариот. Их мол. масса лежит в пределах от 11 ООО до 21 ООО. Гистоны очень богаты основными аминокислотами - аргинином и лизином, на долю которых приходится до 25% аминокислотных остатков белка. Поскольку боковые (К) группы остатков аргинина и лизина при pH 7 протонированы и потому несут положительный заряд, гистоны соединяются с отрицательно заряженной двухцепочечной ДНК с образованием ДНК-гистоно-вого комплекса, который стабилизирован силами электростатического притяжения. [c.873]

    Следовательно, окисление ИУК в ткани, так же как и разрушение ИУК in vivo, непосредственно с активацией ризогенеза не связано. По данным Фелленберга (Fellenberg, 1970, 1971), ИУК при поступлении в черенок связывается ядер ными белками (гистонами). Если соединить ИУК с гистонами до введения в черенок и затем ввести этот комплекс через место среза, то отмечается стимуляция корнеобразования. Таким образом, устанавливается следующая очередность процессов введение ИУК в черенок, разрушение ИУК (первые сутки), начало клеточного деления (вторые сутки), формирование корневого зачатка (четвертые сутки), рост корешка (пятые сутки). [c.130]

    Как уже отмечалось ранее, вместо НС1 для гидролиза можно использовать 1 н. ТХУ, тогда в ядре сохраняются гистоны и возможно одновременное определение ДНК и основных белков. За последние годы разработан ряд модификаций реакции Фельгена с заменой основного фуксина на красители, лейкооснова-кия которых дают с альдегидными группами апуриновой ДНК флуоресцирующие комплексы. Одним, из таких красителей является акридиновый желтый [14], [15]. [c.146]

    По способности извлечения ДНК слабыми солевыми растворами. Лабильная ДНК, представляющая собой обедненный или ненасыщенный гистонами дезоксирибонуклеопротеид диспергированной части хроматина, способна растворяться и извлекаться из ядра 0,14—0,2 М Na l. Остальная часть ДНК находится в составе нуклеогистона, упакованного дополнительными белками (лизиновыми гистонами, негистоновыми белками и т. д.) в более или менее компактный хроматин. Она извлекается из ядра в виде нуклеогистона лишь после обработки 1—2 М Na l в результате диссоциации комплекса на молекулярную форму дезоксирибонуклеопротеида и связывающий его белок. [c.176]

    Хроматиновые волокна напоминают по внешнему виду нитки бус (рис. 27-23). Повторяющиеся, похожие на бусинки структуры этих волокон носят название нуклеосом. Нуклеосома представляет собой комплекс, состоящий из двухцепочечной ДНК длиной около двухсот пар оснований и набора молекул гистонов, вокруг которого дважды обвита эта ДНК нуклеосомы ( бусинки ) имеют диаметр 10-11 нм. В состав каждой нуклеосомы входит восемь молекул гистонов-по две молекулы гистонов Н2А, [c.875]

    Хроматин. Нитевидный комплекс ДНК, гистонов и других белков, составляющий основу эукариотических хромосом. [c.1021]

    Как правило, все ДНК и РНК животного и вирусного происхождения (за исключением, возможно, транспортных РНК) in vivo более или менее прочно связаны с белками. Особый интерес с этой точки зрения представляют гистоны — семейство чрезвычайно гетерогенных основных белков относительно низкого молекулярного веса, которые, по-видимому, образуют прочные стехиометрические комплексы с ДНК во всех соматических клетках любого высшего организма, растения или животного. Гистоны можно отделить от ДНК и подвергнуть хроматографическому разделению. При этом удается получить четыре основные фракции. Другие методы разделения позволили установить, что каждая из этих фракций, начиная от фракции I, наиболее богатой лизином, и кончая фракцией IV, наиболее богатой аргинином, в свою очередь может быть разделена на несколько фракций. С помощью рентгеноструктурного анализа были получены некоторые данные о вторичной структуре свободных гистонов, выделенных из нуклеопротеидов, а также о структуре белка и ДНК в составе нуклеопротеида. В свободных гистонах, судя [c.159]

    В зрелой сперме некоторых рыб ДНК образует комплекс не с гистонами, а с другими основными белками — протаминами. Эти белки обладают резко выраженными основными свойствами и содержат большое количество аргинина, что сближает их в какой-то мере с соответствующей фракцией гистонов. От гистонов их отличает, однако, меньший молекулярный вес, меньшая гетерогенность — по молекулярному весу и аминокислотному составу — [c.160]

    Наиболее распространена в настоящее время классификация, предложенная в начале века и разделяющая белковые вещества на три основные группы простые, сложные и производные белков. К простым белкам, иначе называемым протеинами, относят те, которые при полном гидролизе образуют только аминокислоты, т. е. не содержат небелковых составных частей. В состав их входят следующие группы альбумины, глобулины, проламины, протамины, гистоны, склеропротеины, глютелины. К сложным белкам (протеидам) относят различные типы комплексов простых белков с небелковыми компонентами, такими как углеводы, нуклбиновыб кислоты, липиды, гетероциклические соединения, фосфорная кислота и др. В зависимости от природы небелковой части протеиды подразделяют на нуклеопротеиды, включающие нуклеиновые кислоты хромопротеиды, в состав которых входят различные окрашенные вещества гликопротеиды, содержащие углеводы липопротеиды, содержащие липиды металлопротеиды, включающие металлы фосфопротеиды, содержащие фосфорную кислоту. Это разделение на группы далеко не точно, так как, например, в составе характерных простых белков часто содержится некоторое количество небелковых компонентов (в альбуминах — углеводы) и т. д. Производные белки представляют собой группу, которая охарактеризована в наименьшей степени. Чаще всего здесь раньше имели в виду продукты, получающиеся в результате тех или иных изменений белков, например их энзиматического гидролиза. В последние годы из названий веществ этой группы наиболее применяются (сохранились) два — про-теозы и пептоны. И те, и другие являются продуктами неполного [c.36]

    Гистоны — чрезвычайно интересный компонент хроматина. Они характеризуются высоким содержанием основных аминокислот как показано в табл. 8, примерно каждый четвертый остаток — это либо аргинин, либо лизин. Катионные группы гистона связываются с анионными фосфатными остатками ДНК, образуя так называемый нуклеогистоновый комплекс хроматина. В состав хроматина одного и того-. [c.35]

    В результате соединения гистонов с ДНК в нуклеогистоновый комплекс ДНК приобретает свойства, отличные от свойств свободной ДНК. [c.36]

    По-видимому, нуклеогистоновый компонент хроматина представляет собой генетический материал в состоянии репрессии, неспособный участвовать в транскрипции. Неспособность поддерживать ДНК-зависимый синтез РНК характерна также для нуклеогистоновых комплексов, полученных искусственно путем соединения очищенных гистонов, относящихся к классам I и II, с ДНК [28]. В общем оказалось, что в специализированной растительной клетке любого типа лишь относительно неболь- [c.39]

    Методы фракционирования включают осаждение нейтральными солями [19—21], электрофорез [22, 23], хроматографию на фосфате кальция [24—26] и осаждение дигидрострептомицином [27]. Недавно для фракционирования рибонуклеиновых кислот была использована фракционная диссоциация комплексов нуклеиновая кислота — гистон, примененная ранее к дезоксинуклеиновым кислотам [28]. Во всех фракциях отношение 6-амино- к 6-кетонуклео-зидам было близко к единице. В некоторой степени фракционирование происходит при экстракции фенолом [29—32], возможно как результат дифференциального связывания нуклеиновых кислот с белками. Анионообменные целлюлозы, такие как ЭКТЕОЛА и ДЭАЭ, широко применяются в настоящее время для фракционирования не только рибонуклеиновых кислот [33, 34], включая специфичные для аминокислот транспортные РНК [35], но и рибонуклео- [c.365]


Смотреть страницы где упоминается термин Гистон комплекс с ДНК: [c.235]    [c.241]    [c.251]    [c.394]    [c.235]    [c.304]    [c.251]    [c.492]    [c.394]    [c.374]    [c.890]    [c.140]    [c.287]    [c.194]    [c.182]    [c.413]   
Биохимия Том 3 (1980) -- [ c.301 ]




ПОИСК





Смотрите так же термины и статьи:

Гистоны



© 2024 chem21.info Реклама на сайте