Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты, комплексы

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]


    Говоря о нековалентных взаимодействиях, прежде всего нужно отметать ту большую роль, которую они играют в образовании макроскопического вещества из молекул, атомов и ионов. Именно в результате нековалентных взаимодействий скопления атомов или молекул могут существовать в конденсированном состоянии, в виде жидкостей или твердых тел. Важную роль играют эти взаимодействия в случае полимеров. В частности, за счет нековалентных взаимодействий различные комплексы белков объединяются либо друг с другом, либо с нуклеиновыми кислотами при формировании рибосом, хроматина, вирусов, либо липидами при образовании липопротеидных мембран. Таким образом, нековалентные взаимодействия лежат в основе образования важнейших биологических структур, и роль их для биологии особенно велика. [c.101]

    Ответственная роль в биохимическом синтезе белков принадлежит нуклеиновым кислотам, которые определяют его специфичность, В самой структуре нуклеиновых кислот заключены основы точного их воспроизведения и направленного синтеза белковых молекул, а также передачи наследственных признаков организма. В то же время белок-фермент способствует синтезу нуклеиновых кислот, полисахаридов и других высокомолекулярных соединений. Сложный комплекс веществ белков, нуклеиновых кислот, углеводов и регуляторов их химических превращений, а именно ферментов, гормонов, витаминов, составляет основу жизненного цикла организма. [c.18]

    Взаимодействие биомолекул в растворах сопряжено не только со слабыми (нековалентными) взаимодействиями. Значительна роль молекулярного комплексообразования в биологических процессах. Сильные взаимодействия в многокомпонентных системах биомолекул приводят к возникновению так называемых супрамолекулярных комплексов. Образование соединений, имеющих весьма сложное строение, присуще многим фундаментальным биохимическим реакциям. Молекулярные комплексы биомолекул являются действующим началом многих современных лекарственных препаратов. Большое значение в этих процессах имеет комплементарность взаимодействующих молекул, их так называемое "молекулярное узнавание". Термодинамические аспекты этого экстраординарного явления рассмотрены в четвертой главе монографии, в которой развит подход к комплексному изучению сильных и слабых взаимодействий в растворах таких модельных биологических соединений, как аминокислоты, пептиды, краун-эфиры, криптанды, циклодекстрин, основания нуклеиновых кислот. Значительное место отведено анализу роли растворителя в молекулярном узнавании биомолекул. [c.6]


    Эти эффекты еще увеличиваются у полимерных молекул, несущих большое число зарядов, например у нуклеиновых кислот. Прочность комплексов в этом случае может изменяться на несколько порядков при изменении ионной силы раствора. Например, двойная спираль ДНК есть комплекс двух отрицательно заряж енных полимерных анионов нуклеиновой кислоты. Поэтому для существования ДНК в виде двойной спирали нужно, чтобы ионная сила раствора не была бы слишком низкой. Конечно, говоря о таких огромных молекулах, можно рассуждать лишь качественно, так как использовать уравнение Дебая — Гюккеля, выведенное для точечных зарядов, неправомерно. [c.266]

    Природными соединениями называются органические соединения, образующиеся в результате химических превращений веществ в клетках организмов. Обычно они легко выделяются, и поэтому многие из этих соединений известны уже давно. Структура природных соединений разнообразна — от очень простой (как, например, у простейшего гормона роста растений — этилена) до сложной, иногда даже полимерной (например, у полисахаридов, белков и нуклеиновых кислот). Определение структуры некоторых природных продуктов потребовало многолетних усилий выдающихся исследователей, а в ряде случаев (например, для некоторых макромолекулярных комплексов полисахаридного характера) структурная проблема не решена удовлетворительно до сих пор. [c.178]

    Исключительную роль в жизнедеятельности животных и растительных организмов играют высокомолекулярные нуклеиновые кислоты, представляющие собой полиэфиры фосфорной кислоты и Ы-рибозидов. Нуклеиновые кислоты принимают участие в биохимическом синтезе белков. Дезоксирибонуклеиновые кислоты в комплексе с белками являются материальным носителем наследственности. [c.14]

    Направленное введение Р1 в определенные участки белков или нуклеиновых кислот позволит решать вопросы биохимии с использованием координационной химии. Для этого необходимо изучение модельных систем - комплексов Р1 с составными частями белков ( аминокислотами ) и нуклеиновых кислот (производными пиримидинов). Индивидуальные диастереомеры комплексов Р1(П) и Рё(11) с оптически активными аминокислотами могут оказаться биологически активными веществами и составить основу лекарственных препаратов, например, противоопухолевых. [c.50]

    Нуклеиновые кислоты в качестве лигандов широко используются для очистки белков функционирование которых связано с образованием белково-нуклеиновых комплексов. Эти комплексы удерживаются в первую очередь действием электростатических сил, поэтому элюцию с таких сорбентов ведут повышением концентрации соли. [c.424]

    Ионизированные фосфатные группы полимерного остова сообщают молекулам нуклеиновых кислот большой отрицательный заряд. По этой причине в клетках ДНК обычно присутствует в комплексе с 1) ос- [c.126]

    Железо играет весьма активную роль в жизнедеятельности любых организмов, связанную, прежде всего, с процессами переноса и обмена Оно входит в состав ферментов, катализирующих окислительно-восстановительные процессы, комплексов, служащих для передачи электронов, гемоглобина, являющегося переносчиком кислорода Велика роль железа в обмене нуклеиновых кислот, синтезе белков, в процессах фотосинтеза и дыхания растений, в других биохимических реакциях [c.499]

    Занимаясь вопросами формирования иммунитета, Меклер пришел к заключению, что генетическая информация, детерминирующая биосинтез ранних белков вируса, записана в нуклеиновой кислоте вириона на плюс-нити, а детерминирующая биосинтез структурных белков вириона - на минус-нити [350]. Из анализа взаимодействий этих белков с соответствующими РНК автор сделал вывод, не отличавшийся достаточной строгостью, что они образуют устойчивые комплексы только с той нуклеиновой кислотой, которая комплементарна нуклеиновой кислоте, осуществляющей трансляцию при биосинтезе данного белка [351]. Если это так. то, полагает Меклер, неизбежно существование перекрестной стерео- [c.530]

    Для биологических процессов наиболее важны белки, которые образуют комплексы с двойными липидными слоями, сахаридами и нуклеиновыми кислотами. Некоторую информацию об этих белках можно получить из уже исследованных взаимодействий белок — лиганд. Для расширения наших представлений в этой области необходимы данные о трехмерных структурах таких комплексов. [c.272]

    Кислые полисахариды могут присутствовать в неочищенном препарате липополисахарида, полученном экстракцией смесью вода — фенол. В этом случае на стадии ультрацентрифугирования они вместе с нуклеиновой кислотой остаются в супернатанте. Разделение кислых полисахаридов и нуклеиновых кислот основано на том, что в отличие от комплекса с нуклеиновыми кислотами комплекс цетавлона с кислыми полисахаридами растворим в 0,3 М растворе хлористого натрия. Оба названных комплекса растворяются в 1 М растворе хлористого натрия [12]. Супернатант, содержащий кислые полисахариды и нуклеиновую кислоту, растворяют в таком количестве 0,5 М раствора хлористого натрия, чтобы получился 2%-ный раствор. К этому раствору добавляют 2%-ный водный раствор цетавлона до прекращения выпадения осадка. Осадок комплекса цетавлона с нуклеиновыми кислотами отделяют центрифугированием. При разбавлении супернатанта водой осаждается комплекс цетавлона с кислыми полисахаридами. Этот осадок растворяют в 1 М растворе хлористого натрия (1 г влажного осадка на 100 мл раствора), диализуют 72 ч против воды и содержащий кислые полисахариды раствор лиофилизуют. Модифицированная методика, сходная с приведенной выше, была использована [13] для выделения и очистки кислых полисахаридов из Serratia mar es ens. С помощью этой же самой методики из капсул Е. oli были получены антигены, представляющие собой кислые полисахариды [14]. [c.129]


    В настоящее время метод остановленной струи широко приме-ляется для решения многих задач химической кинетики установление механизмов химической реакции, определение стадий, лимитирующих протекание реакции обнаружение промежуточных комплексов, определение кинетики ферментативных реакций, установление числа и концентрации активных центров фермента, изучение быстрых конформационны5( переходов в белках и нуклеиновых кислотах. Метод требует быстрой регистрации это единственное существенное ограничение его применимости. Особое внимание при применении метода остановленной струи необходимо уделять тер-мостатированию, так как разница в температурах в кювете наблюдения и растворе смеси реагентов может привести к большим оптическим ошибкам, затрудняющим установление механизма наблюдаемой реакции. Точность определения констант скоростей данным методом примерно такая, как и при обычных спектрофотометрических измерениях кинетики химических реакций. [c.28]

    Мы уже познакомились с такими жизненно важными биомолекулами как белки, углеводы, нуклеиновые кислоты. Это подлинные биомолекулы, каждая из которых отличается своеобразным строением и специфической функцией. В то же время названные биомолекулы имеют общие характеристики они состоят из стандартных блоков, объединенных в биополимеры, содержат разнообразные функциональные группы и проявляют многостороннее биологическое действие. В этом смысле липиды представляют собой совершенно особую, уникальную группу природных соединений, в которую входят и низкомолекулярные вещества, и очень сложные белково-липидные и гликолипидные комплексы. [c.95]

    Однако еще до появления жизни на Земле должен был происходить процесс саморепликации. Каким образом Разумно предположить, что фундаментальное значение для репликации нуклеиновых кислот и эволюции генетического кода имели специфические иуклео-нуклеиновые и пуклео-белковые взаимодействия [48]. Подобные процессы узнавания зависят от последовательности оснований и аминокислот. Согласно Мак-Элрою [49], такие взаимодействия, вероятно, играли ключевую роль при образовании белково-нуклеиновых комплексов и имели фундаментальное значение на ранних стадиях эволюции макромолекул. [c.185]

    Ассоциация биологически важных молекул с образованием комплексов лежит в основе построения надмолекулярных структур клетки и является важным этапом в функционировании белков и нуклеиновых кислот в живых организмах. Например, перенос кислорода из легких в различные органы, потребляющие кислород, происходит с помощью специального белка, содержащегося в красных кровяных тельцах — эритроцитах, так называемого гемоглобина, который способен образовывать комплекс с кислородом. В легких происходит ассоциация кислорода с гемоглобином (НЬ) с образованием комплекса НЬ+ + Оа ч НЬОа. В органах, потребляющих кислород, комплексдиссо- циирует, и выделившийся кислород расходуется на реакции окисления. [c.226]

    За последние 20 лет на стыке биологии и неорганической химии возникла и быстро развивается новая научная дисциплина — био-неорганическая химия. Она изучает на молекулярном уровне взаимодействие между ионами биометаллов и биолигандами — протеинами, нуклеиновыми кислотами, их фрагментами и некоторыми другими веществами, находящимися в организме. В первую очередь изучается поведение в живом организме десяти металлов жизни — ионов натрия, калия, магния (с замкнутыми электронными оболочками) ионов марганца, железа, кобальта и меди (с недостроенной Зб(-элек-тронной оболочкой) и иона молибдена (с недостроенной 4< /-оболочкой), Результаты исследований в этой области находят широкое применение в медицине, растениеводстве и охране окружающей среды. Более подробно с ролью этих комплексов в работе клетки и организмов вы познакомитесь при изучении специальных курсов. Интересующиеся могут познакомиться с этими вопросами в специальной литературе .  [c.208]

    Важную роль В жизнедеятельности играют комплексы белков с нуклеиновыми кислотами — нуклеопро-теиды. Из нуклеопротеидов состоят, в частности, хромосомы, важнейшие составные части ядра клетки, ответственные за хранение наследственной информации, а также рибосомы — мельчайшие частицы протоплазмы, в которых происходит синтез белковых молекул. [c.451]

    Рестриктазы незаменимы в структурных исследованиях нуклеиновых кислот. В случае РНК достаточно специфическое расщепление ее цепи можно осуществить с помощью рибонуклеазы Н, гидролизующей полирибонуклеотиды только в ДНК — РИК-гибридах. Для этого с участком РНК, предназначенным для расщепления, предварительно связывают комплементарный ему олигодезоксири-бонуклеотид и обрабатывают образовавшийся комплекс РНК-азой Н (рнс. 4). [c.15]

    Накоплен большой оиыт псиользования гель-фильтрации для очистки рибосом, полисом и ферментов, участвующих в биосинтезе белка и образующих комплексы с нуклеиновыми кислотами, нуклеотидами, а также аминокислотами. Например, при исследовании аминоацилирования тРНК для отделения аминоацил-тРНК-син-тетаз и их комплексов с АТФ и аминокислотами от свободных ами- [c.141]

    Выделение нуклеиновых кислот. 20 г ткани гомогенизируют в стеклянном гомогенизаторе или растирают в ступке с 5-кратным объемом солевого раствора. К гомогенату добавляют 20%-ный раствор ДСН до конечной концентрации 2% и выдерживают 30 мин в термостате при 37°С. К образовавшемуся вязкому раствору добавляют 5 М Na l до концентрации 1 М для диссоциации нуклеопротеидного комплекса. Гомогенат переносят в колбу с притертой пробкой и тщательно встряхивают в течение 10—15 мин с 2,5 объемами смеси хлороформа И изоамилового спирта в соотношении 24 1. Смесь переносят в стеклянные центрифужные стаканы на 50 мл, центрифугируют 30 мин при 800—1000 g. Надосадочная жидкость расслаивается на три фракции в верхней содержатся нуклеиновые кислоты, в средней (плотной) — белки, в нижней, хлороформной фракции — липиды и другие компоненты. [c.167]

    Изучение структуры кристаллического актиномицин-дезок сигуанозинового комплекса имеет прежде всего то значение, что позволяет графически доказать реальную возможность интеркалирования плоских колец в молекулы нуклеиновых кислот. Этот метод показывает также, каким образом специальный реагент, обладающий приблизительной симметрией второго порядка, может избирательно связываться с участками молекулы ДНК, также обладающими осью симметрии второго порядка. [c.210]

    БИОПОЛИМЕРЫ (от греч bios-жизнь и polymeres-состоящий из многих частей, многообразный), прир высокомол соединения, являющиеся структурной основой всех живых организмов Обеспечивают их нормальную жизнедеятельность, выполняя разнообразные биол. функции К Б относятся белки, нуклеиновые кислоты, полисахариды Известны также смешанные Б, напр липопротеины (комплексы, содержащие белки и липиды), гликопротеины (соед, в молекулах к-рых олиго- или полисахаридные цепи ковалентно связаны с пептидными цепями), липополисахариды (соед., молекулы к-рых построены из липидов, олиго-и полисахаридов) [c.289]

    Исследования, проведенные в ряде стран, показали, что металлы, широко применяемые в промышленности и распространенные в окружающей среде, могут оказывать на организм человека не только токсикологическое, но и канцерогенное воздействие [935, 987]. К химическим канцерогенам относят такие металлы, как бериллий, хром, никель потенциальными канцерогенами являются кобальт, кадмий, свинец и некоторые другие металлы [931]. Понятие канцерогенность металла относится не к элементу как таковому, а к его определенному физико-химическому состоянию. Например, канцерогенность хрома может быть объяснена следующим образом. Этот элемент в виде хромат-аниона с помощью сульфатной транспортной системы проникает через клеточную мембрану, тогда как катион хром(П1) сквозь нее не проходит. Клеточная метаболическая система восстанавливает хромат до хрома(П1), который в отличие от оксоаниона хрома(VI) образует прочные комплексы внутри клетки с нуклеиновыми кислотами, протеинами и нуклеозидами, вызывая повреждения ДНК, которые в свою очередь ведут к мутации, а следовательно, и к развитию рака [931]. Согласно концепции Мартелла канцерогенность металла связана со степенью его электроположительности. Ионы электроположительных металлов образуют лабильные комплексы и большей частью не канцерогенны. Ионы же металлов с низкой электроположительностью образуют высококовалентные связи с донорными группами биолигандов и способны подвергаться только очень медленным обменным реакциям с другими лигандами, находящимися в биологических системах, что в конечном счете обусловливает канцерогенное действие этих катионов [931]. [c.500]

    Эти два подкласса четко различаются как по строению входящих в них нуклеотидов, так и по их биологической функции. Нуклеиновые кислоты (обычно сокращенно обозначаемые НК) являются полимерными соединениями с кочень высоким молекулярным весом, достигающим 6 500 000—13 000 000. В зависимости ст того, содержат ли они в своем составе в качестве углеводного комионеита рибозу плп дезоксирибозу, онп называются рибонуклеиновыми кислотами (РНК) или дезоксирибонуклеиновыми кислотами (ДНК). Необходимость такого раздсотеиия диктуется не только различиями в химическом поведении РР1К и ДНК, но и различием их биологических функции. Н клениовые кислоты в комплексах с белками, известных под общи.м названием нуклеопротеидов, играют ключевую роль в процессах жизнедеятельности самых различных организмов. ДНК являются тем первичным химическим материалом, который лежит в основе сложного и далеко еще полностью не выясненного процесса передачи наследственных признаков при делении клетки, а следовательно, и всех процессов, связанных с размножением. Хотя о механизме такой передачи, механизме в чисто химическом смысле этого слова, еще мало что известно, однако решающая роль ДНК в процессе передачи биологического кода не вызывает никакого сомнения и может считаться в настоящее время экспериментально установленным фактом. [c.174]

    Ультрафиолетовые спектры поглощения определяются возбуждением электронных уровней атомов и молекул и обладают максимумами, положение которых характерно для определенных атомных группировок, сопряженных двойных связей и др. В белках ультрафиолетовые спектры поглощения в основном определяются ароматическими аминокислотами—-фенилаланином 260 >/а), тирозином и триптофаном 280 причем спектры поглощения могут быть даже использованы для аналитического определения этих аминокислот. Нуклеиновые кислоты и нуклеопротеиды обладают настолько резким максимумом поглощения при 260—265 м]х, что при помощи фотографирования в ультрафиолетовом микроскопе легко определить их содержание в отдельных клетках (Врумберг). Зависи-кюсть ультрафиолетовых спектров поглощения от pH, состава среды, от образования комплексов с другими соединениями позволяет исследовать изменения состояния растворенных веществ так, по смещению максимума поглощения с 280 до 260—265 м было обнаружено образование комплекса между белками и гюлисахаридами (Розенфельд). Линейные полимеры обычно не имеют интенсивных полос поглощеття в видимой и ближней ультрафиолетовой областях спектра. [c.61]

    Одной из главных структурных особенностей молекул металлопорфиринов является наличие сопряженной л-системы, определяющей возможность сольватационных взаимодействий соединений данного класса с разнообразными ароматическими молекулами, которые могут носить как универсальный, так и специфический характер. Металло-комплексообразование понижает ароматичность л-системы макроцикла в металлопорфирине по сравнению с соответствующим лигандом и создает благоприятные условия для специфических л-л-вза-имодействий, приводящих к образованию л-л-комплексов как с ароматическими л-донорами, так с л-акцепторами. Взаимодействия данного типа вносят значительный вклад в формирование надструктуры хромопротеинов [14, 17], агрегацию порфиринов в растворах, образование комплексов "хозяин-гость" в кристаллах, конформационные свойства порфиринсодержащих биоструктур. Поэтому комплексообразование между порфиринами и различными ароматическими молекулами (кофеин, фенантролинпроизводные, виологены, аминокислоты, нуклеиновые кислоты и т.д.) [18, 19] изучается достаточно интенсивно. Предполагают, что комплексы данного типа образуются за счет л-л-взаимодействий между ароматическими л-системами порфиринового макроцикла и молекулярного лиганда, которые могут иметь гидрофобный (донорно-акцепторный) характер или сопровождаться переносом заряда. При этом энергия взаимодействия между двумя молекулами в л-л-комплексе может быть представлена [20]  [c.306]

    Все биологические процессы осуществляются при непременном участии белков. Они служат регуляторами генетической функции нуклеиновых кислот, в качестве ферментов участвуют во всех стадиях биосинтеза полипептидов, полинуклеотидов и других соединений, катализируют все метаболические процессы. Особые сократительные белки ответственны за клеточные и внутриклеточные движения. В комплексе с липидами белки вхбдят в состав мембран, обеспечивая активный транспорт метжолитов в клетку и из нее. Белки служат для запасания и перешса кислорода. Низкомолекулярные полипептиды, гормоны, Стимулируют функциональную активность в клетках других тканей и органов. Белки осуществляют иммунологическую функцию, защищая организм от чужеродных соединений. Они входят в состав кожи, волос, соединительных тканей, костей и т. д., выполняя динамическую опорную функцию, обеспечивая тем самым взаимосвязь органов, их механическую целостность н защиту. Это далеко не полный перечень осуществляемых белками функций. [c.5]

    Белки могут специфично взаимэдействэвать с другими макромолекулами, например с нуклеиновыми кислотами и полисахаридами. К макромолекулам относят также липиды, поскольку они образуют в водных растворах крупные агрегаты. В нуклеопротеидах, гликопротеидах или липопротеидах белок может составлять менее 50%, и суммарные свойства комплексов часто определяются небелковы.ми фрагментами. Более того, и образование, и стабильность структуры белков могут зависеть от их партнеров по комплексам. Эго наиболее очевидно для тех мембранных белков, которые соединяют различные углеводородные фрагменты липидного бислоя. [c.266]

    Рибосомы — комплексы белков и нуклеиновых кислот. Хорошо известным примером комплексов белков с нуклеиновы ми кислотами является рибосома, катализирующая образование полипептидных цепей [714, 715]. Рибосома содержит несколько молекул РНК и различные белковые молекулы. Она состоит из двух субъединиц неодинаковой величины, между которыми заключена рибосомальная РНК- В Е. oli более крупная субъединица содержит две молекулы РНК (названные 23S и 5S в соответствии с их константами седиментации) и 34 молекулы белков, названные от L1 до L34 . Более мелкая субъединица содержит РНК 16S и 21 белок (от S1 до S21 ). [c.270]


Смотреть страницы где упоминается термин Нуклеиновые кислоты, комплексы: [c.486]    [c.40]    [c.30]    [c.579]    [c.51]    [c.76]    [c.464]    [c.235]    [c.246]    [c.604]    [c.24]    [c.6]   
Неорганическая биохимия Т 1 _2 (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Исследование методом ЯМР нуклеиновых кислот и комплексов нуклеиновых кислот с протеинами

Комплексы кислот

Константа равновесия процесса денатурации комплексов белков с нуклеиновыми кислотами

Нуклеиновые кислоты

Нуклеиновые кислоты комплексы с белками,

Нуклеиновые кислоты, комплексы металлами

Оценка вторичной структуры нуклеиновых кислот по спектрам поглощения комплекса нуклеиновая кислота — акридиновый оранжевый



© 2024 chem21.info Реклама на сайте